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The example of sea height
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How to estimate water level?
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In situ approaches

• Local measurements:

• flood level markers,

• GPS buoys.

• Need of a lot of data points to get a 
global coverage…

parc-cotentin-bessin.fr ndbc.noaa.gov
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Remote sensing

7

Acquisition of information about an object without making physical contact with it.
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• radar, lidar, sonar, etc.
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• X-band (2.5 - 3.75 cm): rain drops (precipitations),

• K-band (1.11 - 1.67 cm): water vapor (clouds).
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Global Navigation Satellite System (GNSS)

Positioning system.
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Positioning system.
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Satellite A

GNSS principle

Positioning system.
Satellite constellations: GPS, GALILEO, BeiDou, GLONASS and others.

15
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GNSS principle

Ranging code A

Satellite A
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GNSS principle

pseudo-range
𝑐𝜏𝐴

Satellite A

Pseudo-range ≠ geometric distance:
tropospheric delay, ionospheric delay, clock biases and others to be compensated.

17
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Position Velocity Timing (PVT) solution: 
trilateration using three satellites + 1 satellite to estimate the receiver clock bias.

GNSS principle

Satellite C

Satellite B

𝑐𝜏𝐵

𝑐𝜏𝐶

𝑐𝜏𝐴

Satellite D

𝑐𝜏𝐷

Satellite A

18
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Standard GNSS signal processing:

• range estimation: time-delay estimation,

• cross-correlation.

∗ ≈

noisy signal 𝑥(𝑡) clean replica s(𝑡)

GNSS signal processing

Satellite B

19
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GNSS signal processing

Satellite B
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Standard GNSS signal processing:

• range estimation: time-delay estimation,

• cross-correlation.

lag

histogram

lag

≈
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Standard GNSS signal processing:

• range estimation: time-delay estimation,

• cross-correlation.

lagෝ𝜏1

histogram

lagෝ𝜏1
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≈
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Standard GNSS signal processing:

• range estimation: time-delay estimation,

• cross-correlation.

lagෝ𝜏2

histogram

lagෝ𝜏2

1

≈
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∗

noisy signal 𝑥(𝑡) clean replica s(𝑡)

GNSS signal processing

Satellite B
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Standard GNSS signal processing:

• range estimation: time-delay estimation,

• cross-correlation.

lagෝ𝜏3

1

2

histogram

lagෝ𝜏3

≈



Introduction Ground-based GNSS-R2S signal model ConclusionDiffuse reflection

∗

noisy signal 𝑥(𝑡) clean replica s(𝑡)

GNSS signal processing

lag

histogram

𝜇𝜏

𝜎𝜏

Satellite B

24

Standard GNSS signal processing:

• range estimation: time-delay estimation,

• cross-correlation.

What one expects from an estimator:

• unbiased: 𝜇𝜏 = 𝜏𝑡𝑟𝑢𝑒,

• minimum variance: 𝜎𝜏 = CRB(𝜏).

CRB: Cramér-Rao bound.

≈
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GNSS multipath

25

Definition [Kaplan and Hegarty, 2017]: 
Multipath is the reception of multiple 
reflected and diffracted replicas of the 
desired signal, along with the direct 
path signal.
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Definition [Kaplan and Hegarty, 2017]: 
Multipath is the reception of multiple 
reflected and diffracted replicas of the 
desired signal, along with the direct 
path signal.

• Degradation of the estimation:

• bias induced,

• variance affected.

• In mobile applications: random and 
dynamic phenomenon.
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GNSS multipath

𝑐Δ𝜏

ℎ

ℎ

𝑒

𝑐Δ𝜏 = 2ℎsin(𝑒)

29

Definition [Kaplan and Hegarty, 2017]: 
Multipath is the reception of multiple 
reflected and diffracted replicas of the 
desired signal, along with the direct 
path signal.

• Degradation of the estimation:

• bias induced

• variance affected

• In mobile applications: random and 
dynamic phenomenon

• It contains information!

• Geometric equation:
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GNSS reflectometry (GNSS-R)

30

GNSS-R: study of GNSS signals reflected upon the Earth

• GNSS signals: L-band signals received 24/7 anywhere on Earth: signals of 
opportunity, 

• altimetry and/or reflecting surfaces properties (e.g., reflectivity, roughness).
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GNSS-R: study of GNSS signals reflected upon the Earth

• GNSS signals: L-band signals received 24/7 anywhere on Earth: signals of 
opportunity, 

• altimetry and/or reflecting surfaces properties (e.g., reflectivity, roughness).

• local coverage

• coherent reflections

• one or two antennas
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GNSS reflectometry (GNSS-R)

ground-based airborne
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GNSS-R: study of GNSS signals reflected upon the Earth

• GNSS signals: L-band signals received 24/7 anywhere on Earth: signals of 
opportunity, 

• altimetry and/or reflecting surfaces properties (e.g., reflectivity, roughness).

• local coverage

• coherent reflections

• one or two antennas

• wide coverage

• coherent and non-
coherent reflections

• two antennas
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GNSS reflectometry (GNSS-R)

ground-based spaceborneairborne1

2

3
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Objective of the thesis
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Use signal processing and estimation theory tools
as a mathematical framework for GNSS-R
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Dual source signal model:

• definition,

• estimation challenge,

• lower bound.

Objective of the thesis
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1

Use signal processing and estimation theory tools
as a mathematical framework for GNSS-R
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Dual source signal model:

• definition,

• estimation challenge,

• lower bound.

Ground-based GNSS-R:

• data collection campaign,

• processing example.

Objective of the thesis

38

1

2

Use signal processing and estimation theory tools
as a mathematical framework for GNSS-R
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Use signal processing and estimation theory tools
as a mathematical framework for GNSS-R
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Dual source signal model:

• definition,
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• lower bound.

Ground-based GNSS-R:

• data collection campaign,

• processing example.

Diffuse reflection:

• definition,

• estimation and detection challenges.

Objective of the thesis
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1

2

3

Theoretical approach

Experimental approach

Exploratory approach

Use signal processing and estimation theory tools
as a mathematical framework for GNSS-R
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1 - Dual source signal model

Credit: SuperHavi 41
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Signal model

direct path

reflected path

42
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• Dual source signal model with specular reflection:

with 𝑁 the number of samples and, for 𝜼𝑖
𝑇 = 𝜏𝑖 , 𝐹𝑑,𝑖 ,

𝐀 𝜼0, 𝜼1 = 𝐬 𝜼0 , 𝐬 𝜼1 ,

𝐬 𝜼𝑖 = … , 𝑠(𝑛𝑇𝑠 − 𝜏𝑖 𝑒
−𝑗2𝜋𝐹𝑑,𝑖(𝑛𝑇𝑠−𝜏𝑖), … ),

𝜶𝑇 = 𝜌0𝑒
𝑗𝜙0 , 𝜌1𝑒

𝑗𝜙1 .

Signal model

𝐱 = 𝐀 𝜼0, 𝜼1 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ,

direct path

reflected path

43
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• Dual source signal model with specular reflection:

with 𝑁 the number of samples and, for 𝜼𝑖
𝑇 = 𝜏𝑖 , 𝐹𝑑,𝑖 ,

𝐀 𝜼0, 𝜼1 = 𝐬 𝜼0 , 𝐬 𝜼1 ,

𝐬 𝜼𝑖 = … , 𝑠(𝑛𝑇𝑠 − 𝜏𝑖 𝑒
−𝑗2𝜋𝐹𝑑,𝑖(𝑛𝑇𝑠−𝜏𝑖), … ),

𝜶𝑇 = 𝜌0𝑒
𝑗𝜙0 , 𝜌1𝑒

𝑗𝜙1 .

• Deterministic parameters formulation with the following vector of unknowns:

Signal model

𝐱 = 𝐀 𝜼0, 𝜼1 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ,

𝝐𝑇 = 𝜎𝑛
2, 𝜏0, 𝐹𝑑,0, 𝜌0, 𝜙0, 𝜏1, 𝐹𝑑,1, 𝜌1, 𝜙1 .

𝜽1
𝑇𝜽0

𝑇

direct path

reflected path

44
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Cramér-Rao bound (CRB)

• Problem: estimate 𝝐. How good can we get?
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Cramér-Rao bound (CRB)

• Problem: estimate 𝝐. How good can we get?

• Cramér-Rao bound: theoretical lower bound for the variance of any locally
unbiased estimator.

46
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Cramér-Rao bound (CRB)

• Problem: estimate 𝝐. How good can we get?

• Cramér-Rao bound: theoretical lower bound for the variance of any locally
unbiased estimator.

• From the signal model, the Fisher Information Matrix (FIM) can be obtained
using the Slepian-Bangs formula [Yau and Bresler, 1992]:

𝐅𝝐|𝝐 𝝐 𝑘,𝑙
=

2

𝜎𝑛
2 Re

𝜕𝐀𝜶

𝜕𝜖𝑘

𝐻
𝜕𝐀𝜶

𝜕𝜖𝑙
+
𝑁

𝜎𝑛
4

𝜕𝜎𝑛
2

𝜕𝜖𝑘

𝜕𝜎𝑛
2

𝜕𝜖𝑙
.
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Cramér-Rao bound (CRB)

• Problem: estimate 𝝐. How good can we get?

• Cramér-Rao bound: theoretical lower bound for the variance of any locally
unbiased estimator.

• From the signal model, the Fisher Information Matrix (FIM) can be obtained
using the Slepian-Bangs formula [Yau and Bresler, 1992]:

• The CRB for the estimation of 𝝐 is obtained by inverting the FIM:

𝐅𝝐|𝝐 𝝐 𝑘,𝑙
=

2

𝜎𝑛
2 Re

𝜕𝐀𝜶

𝜕𝜖𝑘

𝐻
𝜕𝐀𝜶

𝜕𝜖𝑙
+
𝑁

𝜎𝑛
4

𝜕𝜎𝑛
2

𝜕𝜖𝑘

𝜕𝜎𝑛
2

𝜕𝜖𝑙
.

𝐂𝐑𝐁𝝐|𝝐 𝝐 = 𝐅𝝐|𝝐 𝝐
−1

.
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Cramér-Rao bound (CRB)

• Closed-form expression that depends on the signal baseband samples.

• 𝐅𝜽𝒊|𝝐: known uncoupled contribution from each signal,

• 𝐅𝜽1,𝜽0|𝝐 = 𝐅𝜽0,𝜽1|𝝐
𝐓 : interference terms!

𝐂𝐑𝐁𝝐|𝝐 𝝐 =

𝐹𝜎𝑛2|𝝐 𝟎 𝟎

𝟎 𝐅𝜽0|𝝐 𝐅𝜽0,𝜽1|𝝐
𝟎 𝐅𝜽1,𝜽0|𝝐 𝐅𝜽1|𝝐

−𝟏

.
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Cramér-Rao bound (CRB)

• Closed-form expression that depends on the signal baseband samples.

• 𝐅𝜽𝒊|𝝐: known uncoupled contribution from each signal,

• 𝐅𝜽1,𝜽0|𝝐 = 𝐅𝜽0,𝜽1|𝝐
𝐓 : interference terms!

• Validation of the expression: 

• implementation of an efficient estimator (unbiased and variance equal to 
the CRB) and check the variance. 

𝐂𝐑𝐁𝝐|𝝐 𝝐 =

𝐹𝜎𝑛2|𝝐 𝟎 𝟎

𝟎 𝐅𝜽0|𝝐 𝐅𝜽0,𝜽1|𝝐
𝟎 𝐅𝜽1,𝜽0|𝝐 𝐅𝜽1|𝝐

−𝟏

.
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Cramér-Rao bound (CRB)

• Closed-form expression that depends on the signal baseband samples.

• 𝐅𝜽𝒊|𝝐: known uncoupled contribution from each signal,

• 𝐅𝜽1,𝜽0|𝝐 = 𝐅𝜽0,𝜽1|𝝐
𝐓 : interference terms!

• Validation of the expression: 

• implementation of an efficient estimator (unbiased and variance equal to 
the CRB) and check the variance. 

• Such an estimator does not exist for the non-linear problem at hand… 

• Estimator asymptotically efficient (when the number of observations [Stoica
and Nehorai, 1990] or the the signal to noise ratio [Renaux et al. 2006] 
become large): the maximum likelihood estimator!

𝐂𝐑𝐁𝝐|𝝐 𝝐 =

𝐹𝜎𝑛2|𝝐 𝟎 𝟎

𝟎 𝐅𝜽0|𝝐 𝐅𝜽0,𝜽1|𝝐
𝟎 𝐅𝜽1,𝜽0|𝝐 𝐅𝜽1|𝝐

−𝟏

.
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• Signal model:

Dual source maximum likelihood estimator (2S-MLE)

52

𝐱 = 𝐀 𝜼0, 𝜼1 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ⇒ 𝐱 ∼ 𝑪𝑵 𝐀𝜶, 𝜎𝑛

2𝐈𝑁 .
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• Signal model:

• Maximum likelihood estimation: ො𝝐 maximizes the likelihood 𝑝 𝐱; 𝝐 that the 
process described by the model produced the data 𝐱 that was actually observed:

Dual source maximum likelihood estimator (2S-MLE)

ො𝝐 = arg max
𝝐

𝑝 𝐱; 𝝐 where  𝑝 𝐱; 𝝐 =
1

𝜋𝜎𝑛
2 𝑁 𝑒

−
1

𝜎𝑛
2 𝐱−𝐀𝜶 2

. 

53

𝐱 = 𝐀 𝜼0, 𝜼1 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ⇒ 𝐱 ∼ 𝑪𝑵 𝐀𝜶, 𝜎𝑛

2𝐈𝑁 .
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• Signal model:

• Maximum likelihood estimation: ො𝝐 maximizes the likelihood 𝑝 𝐱; 𝝐 that the 
process described by the model produced the data 𝐱 that was actually observed:

• 9-dimensional grid search!

Dual source maximum likelihood estimator (2S-MLE)

𝐱 = 𝐀 𝜼0, 𝜼1 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ⇒ 𝐱 ∼ 𝑪𝑵 𝐀𝜶, 𝜎𝑛

2𝐈𝑁 .

ො𝝐 = arg max
𝝐

𝑝 𝐱; 𝝐 where  𝑝 𝐱; 𝝐 =
1

𝜋𝜎𝑛
2 𝑁 𝑒

−
1

𝜎𝑛
2 𝐱−𝐀𝜶 2

. 
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• Signal model:

• Maximum likelihood estimation: ො𝝐 maximizes the likelihood 𝑝 𝐱; 𝝐 that the 
process described by the model produced the data 𝐱 that was actually observed:

• 9-dimensional grid search!

Dual source maximum likelihood estimator (2S-MLE)

𝐱 = 𝐀 𝜼0, 𝜼1 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ⇒ 𝐱 ∼ 𝑪𝑵 𝐀𝜶, 𝜎𝑛

2𝐈𝑁 .

ො𝝐 = arg max
𝝐

𝑝 𝐱; 𝝐 where  𝑝 𝐱; 𝝐 =
1

𝜋𝜎𝑛
2 𝑁 𝑒

−
1

𝜎𝑛
2 𝐱−𝐀𝜶 2

. 
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• Iterative search:
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asymptotically efficient (large SNR).

64

• Simulation set-up:

• signal: GPS L1 C/A,

• cΔ𝜏 = 37 m,

• 𝐹𝑑,0 = 20 Hz, 𝐹𝑑,1 = 20 Hz, 

• 𝜌1/𝜌0 = 0.5, Δ𝜙 = 15o, 

• 1000 Monte Carlo runs.
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Wrap-up on 2S signal model

In this presentation

• Dual source signal model adapted to the ground-based GNSS-R.

• Derivation of a closed-form CRB and validation using the 2S-MLE.

Lubeigt et al. 2020, Remote Sensing.
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Wrap-up on 2S signal model

In this presentation

Related works

• Dual source signal model adapted to the ground-based GNSS-R.

• Derivation of a closed-form CRB and validation using the 2S-MLE.

Lubeigt et al. 2020, Remote Sensing.

• Use of the CRB as a way to assess GNSS multipath effect.

Lubeigt et al. 2022, IEEE Aerospace Conference.

• Proposition of a metric for candidate GNSS signal design based on the CRB.

Lubeigt et al. 2022, IEEE Trans. Aerosp. Electron. Syst.

• Derivation of the Misspecified CRB (MCRB)

Lubeigt et al. 2023, Signal Processing.
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2 - Ground-based GNSS-R
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• Standard GNSS-R processing:

• 1 channel for the direct path,

• 1 channel for the reflected path.

Motivation
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• Oscillations due to changing 
geometry!

• GNSS-IR or IPT techniques 
to estimate the height   
[Ribot et al. 2014].
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• Crosstalk effect:

• direct channel processing,

• SNR during the recording.

• Oscillations due to changing 
geometry!

• GNSS-IR or IPT techniques 
to estimate the height   
[Ribot et al. 2014].

• Standard GNSS-R processing:

• 1 channel for the direct path,

• 1 channel for the reflected path.

• Assumption: channels isolated from one 
another. 

• Ground-based GNSS-R is usually put 
aside because of the signal crosstalk.

• Challenge: change the signal processing 
approach to cope with the presence of 
crosstalk.

Motivation

𝐱 = 𝜌0𝑒
𝑗𝜙0𝐬 𝜼0 + 𝜌1𝑒

𝑗𝜙1𝐬 𝜼1 +𝐰.
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𝐱 = 𝜌𝑒𝑗𝜙𝐬 𝜼 + 𝐰, 𝜼 = 𝜏, 𝐹𝑑
T.

x
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Gruissan experiment
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• Satellite visibility: orbit propagation based on TLE.
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Experiment planning

• Site modeling: definition of a mask.

• Satellite visibility: orbit propagation based on TLE.

• Experiment: July 27, 2021! 

80
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• Equipment:
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• 4 synchronized channels:

• 2 L1/E1 at 6.144 Msps,

• 2 L5/E5A at 61.440 Msps.
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Assuming no crosstalk: single source processing (Maximum Likelihood estimator):

• RHCP antenna: Ƹ𝜏0. 

• LHCP antenna: Ƹ𝜏1.

Standard signal processing

90

ℎ =
𝑐 Ƹ𝜏1 − Ƹ𝜏0
2 sin 𝑒
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Dual source signal processing

91

Assuming crosstalk: dual source processing (CLEAN-RELAX estimator):

• RHCP antenna: Ƹ𝜏0
RHCP, Ƹ𝜏1

RHCP.

• LHCP antenna: Ƹ𝜏0
LHCP, Ƹ𝜏1

LHCP.
ℎ =

𝑐 Ƹ𝜏1
LHCP − Ƹ𝜏0

RHCP

2 sin 𝑒
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Wrap-up on ground-based GNSS-R

92

In this presentation

• Presentation of the Gruissan experiment.

• First results using a simple dual source signal processing scheme.

Lubeigt et al. 2022, GRETSI.
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Wrap-up on ground-based GNSS-R
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In this presentation

Related works

• Presentation of the Gruissan experiment.

• First results using a simple dual source signal processing scheme.

Lubeigt et al. 2022, GRETSI.

• Use of the 2S-CRB to assess signal crosstalk impact on standard GNSS-R 
processings.

Lubeigt et al. 2021, Remote Sensing.

• Signal antenna close-to-ground GNSS-R:

• Taylor approximation of the 2S-MLE to reduce its complexity.

• Validation with simulations and comparison with 2S-MLE performance.

Lubeigt et al. 2022, NAVITEC.

Lubeigt et al. (under review after major revision), Signal Processing.
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3 – Diffuse reflection

Credit: Xavier Lubeigt
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Specular vs diffuse reflections
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Specular vs diffuse reflections
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Specular reflection

• smooth surface  
(mirror-like),

• coherent reflection,

• simple signal model.

Diffuse reflection

• rough surface,

• coherent and non-
coherent reflection,

• signal model?
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Towards the impulse response signal model

101

• Specular reflection:

• symmetric cross-correlation function.
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• symmetric cross-correlation function.

• Diffuse reflection:

• distorted cross-correlation function,

• convolution product?
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Towards the impulse response signal model
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• Specular reflection:

• symmetric cross-correlation function.

• Diffuse reflection:

• distorted cross-correlation function,

• convolution product?

Transmitted
signal

Reflecting surface 
impulse response

∗=
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• Impulse response signal model (with 𝑃 sources):

with, for 𝜼𝑇 = 𝜏, 𝐹𝑑 , 𝐡 = σ𝑝=0
𝑃−1𝛼𝑝𝛿𝑝𝑇𝑠 ,

𝜶𝑇 = … , 𝛼𝑝, … , 𝐀P 𝜼 = … , 𝐬𝑝 𝜼 , … ,

𝐬𝑝 𝜼 = … , 𝑠(𝑛𝑇𝑠 − 𝜏 − 𝑝𝑇𝑠 𝑒
−𝑗2𝜋𝐹𝑑(𝑛𝑇𝑠−𝜏−𝑝𝑇𝑠), … ).

𝐱 = 𝐡 ∗ 𝐬0 𝜼 +𝐰 = 𝐀𝑃 𝜼 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ,

Reflecting surface IR estimation challenges

106

band-limited:
regular spacing
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state inference), classification of reflecting surface, etc.

• Challenge: determining the number of sources 𝑃 to describe the impulse response.

𝐱 = 𝐡 ∗ 𝐬0 𝜼 +𝐰 = 𝐀𝑃 𝜼 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ,

Reflecting surface IR estimation challenges
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• Undershoot: 

• missed information, 

• bias estimates.

• Overshoot:

missing

band-limited:
regular spacing
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• Impulse response signal model (with 𝑃 sources):

with, for 𝜼𝑇 = 𝜏, 𝐹𝑑 , 𝐡 = σ𝑝=0
𝑃−1𝛼𝑝𝛿𝑝𝑇𝑠 ,

𝜶𝑇 = … , 𝛼𝑝, … , 𝐀P 𝜼 = … , 𝐬𝑝 𝜼 , … ,

𝐬𝑝 𝜼 = … , 𝑠(𝑛𝑇𝑠 − 𝜏 − 𝑝𝑇𝑠 𝑒
−𝑗2𝜋𝐹𝑑(𝑛𝑇𝑠−𝜏−𝑝𝑇𝑠), … ).

• Motivations: impulse response characterization, reflecting surface roughness (sea
state inference), classification of reflecting surface, etc.

• Challenge: determining the number of sources 𝑃 to describe the impulse response.

𝐱 = 𝐡 ∗ 𝐬0 𝜼 +𝐰 = 𝐀𝑃 𝜼 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ,

Reflecting surface IR estimation challenges
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• Undershoot: 

• missed information, 

• bias estimates.

• Overshoot:

• correct but not optimal,

• overkill…

missing useless

band-limited:
regular spacing
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Reflecting surface IR size determination
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Iterative procedure



Introduction Ground-based GNSS-R2S signal model ConclusionDiffuse reflection

Reflecting surface IR size determination
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2
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Reflecting surface IR size determination
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 1
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Reflecting surface IR size determination
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 2
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Reflecting surface IR size determination
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 3



Introduction Ground-based GNSS-R2S signal model ConclusionDiffuse reflection

Reflecting surface IR size determination
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4
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Reflecting surface IR size determination
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4
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Reflecting surface IR size determination
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 8
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 8
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 8
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 8
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 8
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 8
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 8
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Iterative procedure

• Assume 𝑃 sources, 𝑃 < 𝑃true,

• test statistic for source 𝑃 + 1 based on 
the likelihood criterion:

Overshoot-and-decimate procedure

• Assume 𝑀 sources, 𝑀 > 𝑃true,

• test statistic for the 𝑀 candidates 
based on a likelihood ratio 𝐿𝑅:

𝑇𝑃+next = 𝐏𝐀𝑃
⊥ 𝐱

𝐻
𝑠𝑃+1 Ƹ𝜏, 𝐹𝑑

2

𝑃 = 4

𝐿𝑅𝑚 = ൗ𝐏𝐀𝑀
⊥ 𝐱

2
𝐏𝐀𝑀−1,𝑚

⊥ 𝐱
2

𝑃 = 4
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Wrap-up on diffuse reflection

131

In this presentation

• Differences between specular and diffuse reflections.

• Introduction to reflecting surface impulse response signal model.

• Determination of the impulse response size.

Lubeigt et al. (under review after major revision), Signal Processing.
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Wrap-up on diffuse reflection

132

In this presentation

Related works

• Differences between specular and diffuse reflections.

• Introduction to reflecting surface impulse response signal model.

• Determination of the impulse response size.

Lubeigt et al. (under review after major revision), Signal Processing.

Signal coherence study with ICE in Barcelona:

• Mallorca’s Puig Major experiment data.

• Detection of coherent-to-non-coherent transition based on the phase observation.

• Glistening zone size computation based on geometry.
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Conclusion

Credit: Ronan Lambert
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Conclusion

134

GNSS Multipath

Theoretical approach:
• Dual source signal model.
• Derivation of the Cramér-Rao bound.
• Validation using the properties of the MLE.
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Conclusion
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GNSS Multipath

Theoretical approach:
• Dual source signal model.
• Derivation of the Cramér-Rao bound.
• Validation using the properties of the MLE.

Ground-based GNSS-R

Experimental approach:
• Limits of current ground-based GNSS-R processing techniques.
• Gruissan experiment preparation.
• Dual source processing for weak crosstalk scenarios.
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Conclusion
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GNSS Multipath

Theoretical approach:
• Dual source signal model.
• Derivation of the Cramér-Rao bound.
• Validation using the properties of the MLE.

Ground-based GNSS-R

Experimental approach:
• Limits of current ground-based GNSS-R processing techniques.
• Gruissan experiment preparation.
• Dual source processing for weak crosstalk scenarios.

Diffuse reflection

Exploratory approach:
• Specular / Diffuse reflection main differences.
• Reflecting surface impulse response signal model.
• Size of the reflecting surface impulse response.
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Perspectives

137

GNSS Multipath

• Extension of MCRB to GNSS interferences (jamming, spoofing).

Ortega et al. (under review), Navigation.

• Semiparametric signal models [Fortunati et al. 2019].
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Perspectives
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GNSS Multipath

• Extension of MCRB to GNSS interferences (jamming, spoofing).

Ortega et al. (under review), Navigation.

• Semiparametric signal models [Fortunati et al. 2019].

Ground-based GNSS-R

• Exploitation of wide bandwidth signals such as GALILEO E5 
AltBOC or GNSS meta-signals [Ortega et al. 2020].

• Carrier phase [Lestarquit et al. 2016], [Medina et al. 2020].
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GNSS Multipath

• Extension of MCRB to GNSS interferences (jamming, spoofing).

Ortega et al. (under review), Navigation.

• Semiparametric signal models [Fortunati et al. 2019].

Ground-based GNSS-R

• Exploitation of wide bandwidth signals such as GALILEO E5 
AltBOC or GNSS meta-signals [Ortega et al. 2020].

• Carrier phase [Lestarquit et al. 2016], [Medina et al. 2020].

Diffuse reflection

• Reflecting surfaces are random objects:
• unconditional signal models [Stoica and Nehorai, 1990],
• sparsity-based models [Zhang et al. 2022].

• CNES SAFIRE experiment (airborne GNSS-R).
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• Slepian-Bangs formula:

• 𝐀𝜶 = 𝜌0𝑒
𝑗𝜙0𝐬 𝜏0, 𝑏0 + 𝜌1𝑒

𝑗𝜙1𝐬(𝜏1, 𝑏1).

• After derivating and rearranging the terms:

• Example for 𝑊1,1
Δ :

Back-up: CRB calculation steps

144

𝐅𝝐|𝝐 𝝐 𝑘,𝑙
=

2

𝜎𝑛
2 Re

𝜕𝐀𝜶

𝜕𝜖𝑘

𝐻 𝜕𝐀𝜶

𝜕𝜖𝑙
+

𝑁

𝜎𝑛
4

𝜕𝜎𝑛
2

𝜕𝜖𝑘

𝜕𝜎𝑛
2

𝜕𝜖𝑙
.

𝑊1,1
Δ = 𝑒𝑗𝜔𝑐Δ𝑏𝜏0න

𝑅

𝑠 𝑡 − 𝜏0 𝑠 𝑡 − 𝜏1
∗𝑒−𝑗2𝜋𝑓𝑐Δ𝑏𝑡d𝑡

= න
𝑅

𝑠 𝑢 − Δ𝜏 𝑠 𝑢 𝑒j2𝜋𝑓𝑐Δ𝑏𝑢
∗
d𝑢

= න
−
𝐹𝑠
2

𝐹𝑠
2
𝑆 𝑓 𝑒−𝑗2𝜋𝑓Δ𝜏 𝑆 𝑓 − 𝑓𝑐Δ𝑏

∗d𝑓

𝑢 ← 𝑡 − 𝜏1

FT over an 
hermitian product

𝐅𝝐|𝝐 𝝐 =
2𝐹𝑠

𝜎𝑛
2 𝑅𝑒 𝐐 𝐖 𝐖Δ H

𝐖Δ 𝐖
𝐐H where 𝐖Δ =

𝑊1,1
Δ 𝑊1,2

Δ 𝑊1,3
Δ

𝑊2,1
Δ 𝑊2,2

Δ 𝑊2,3
Δ

𝑊3,1
Δ 𝑊3,2

Δ 𝑊3,3
Δ

.
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• Fourier transform of a band-limited signal of band 𝐵 = 𝐹𝑠, for 𝑓 ∈ −
𝐹𝑠

2
,
𝐹𝑠

2
:

where

Back-up: CRB calculation steps

𝑊1,1
Δ = න

−
𝐹𝑠
2

𝐹𝑠
2
𝑆 𝑓 𝑒−𝑗2𝜋𝑓Δ𝜏𝑆 𝑓 − 𝑓𝑐Δ𝑏

∗d𝑓

=
1

𝐹𝑠
න
−
1
2

1
2
𝐬T𝝂 𝑓 ∗ 𝑒

−𝑗2𝜋𝑓
Δ𝜏
𝑇𝑠 𝐬H𝐔

Δ𝑏𝑓𝑐
𝐹𝑠

𝝂 𝑓 d𝑓

=
1

𝐹𝑠
𝐬H𝐔

Δ𝑏𝑓𝑐
𝐹𝑠

න
−
1
2

1
2
𝝂 𝑓 𝝂 𝑓 H𝑒

−𝑗2𝜋𝑓
Δ𝜏
𝑇𝑠 d𝑓

𝐕Δ,0
Δ𝜏
𝑇𝑠

𝐬 =
1

Fs
𝐬H𝐔

Δ𝑏𝑓𝑐
𝐹𝑠

𝐕Δ,0
Δ𝜏

𝑇𝑠
𝐬,

𝑓 ←
𝑓

𝐹𝑠

𝐔 𝑞 = diag … , 𝑒−𝑗2𝜋𝑞𝑛, … , 𝐕Δ,0 𝑝
𝑘,𝑙

= sinc 𝑘 − 𝑙 − 𝑝 .

𝑆 𝑓 =
1

𝐹𝑠


𝑛=0

𝑁−1

𝑠 𝑛𝑇𝑠 𝑒
−𝑗2𝜋𝑓𝑛𝑇𝑠 =

1

𝐹𝑠
𝐬T𝝂 𝑓 ∗ where ቐ

𝐬 = … , 𝑠 𝑛𝑇𝑠 , …
T,

𝝂 𝑓 = … , 𝑒𝑗2𝜋𝑓𝑛, …
T
.

145



Introduction Ground-based GNSS-R2S signal model ConclusionDiffuse reflection

• True signal model: dual source signal model, with 𝜽𝑇 = (𝜼𝑇 , 𝜌, 𝜙) and 𝜼𝑇 = (𝜏, 𝑏),

• Misspecified signal model: single source signal model, 𝑝𝑡: pseudotrue,

• Misspecified Maximum Likelihood Estimator (MMLE): MLE of the misspecified
model. The MMLE is biased but it is asymptotically misspecified-unbiased: it
concentrates to a mean with a given variance that can be characterized:

• Mean: pseudotrue estimate that minimizes the Kullback-Leibler Divergence:

• Variance: misspeciefied Cramér-Rao bound (MCRB):

• 𝐀 𝜽𝑝𝑡 accounts for the model misspecification.

• 𝐁 𝜽𝑝𝑡 is the FIM of the single source signal model (known).

Back-up: Misspecified Cramér-Rao bounds (MCRB)

146

𝑝𝐱 𝐱; 𝜽0, 𝜽1 = 𝑪𝑵 𝛼0𝐚 𝜼0 + 𝛼1𝐚(𝜼1), 𝜎𝑛
2𝐈𝑁 .

𝑓𝐱 𝐱; 𝜽𝑝𝑡 = 𝑪𝑵 𝛼𝑝𝑡𝐚 𝜼𝑝𝑡 , 𝜎𝑛
2𝐈𝑁 .

𝜽𝑝𝑡 = argmin
𝜽

𝐷(𝑝𝐱| 𝑓𝐱 .

𝐌𝐂𝐑𝐁(𝜽𝑝𝑡) = 𝐀 𝜽𝑝𝑡
−1
𝐁 𝜽𝑝𝑡 𝐀 𝜽𝑝𝑡

−1
.
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• Simulation set-up:

• signal: GPS L1 C/A,

• 2000 Monte Carlo runs.

Back-up: Misspecified Cramér-Rao bounds (MCRB)

147

𝜽0 𝜽1 𝜽𝑝𝑡

𝜏 [m] 0 73.26 7

𝐹𝑑 [Hz] 0 100 24

𝜌 [-] 1 0.5 1.23

𝜙 [deg] 0 15 2
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Back-up: 2S-MLE dimensionality reduction

148

• Signal model:

• Maximizing 𝑝(𝐱;𝝐) is equivalent to minizing 𝐱 − 𝐀𝜶 2:

• and with the projector 𝐏𝐀 = 𝐀 𝐀H𝐀
−𝟏
𝐀𝐇,

𝐱 − 𝐀𝜶 2 = 𝐏𝐀(𝐱 − 𝐀𝜶) 2 + 𝐏𝐀
⊥ 𝐱 − 𝐀𝜶

2

= 𝐀 𝐀H𝐀
−𝟏
𝐀H𝐱 − 𝜶

2

null for 𝜶 well chosen

+ 𝐏𝐀
⊥𝐱

2
.

𝐱 = 𝐀 𝜼0, 𝜼1 𝜶 +𝐰,𝐰 ∼ 𝐶𝑁 𝟎, 𝜎𝑛
2𝐈N ⇒ 𝐱 ∼ 𝑪𝑵 𝐀𝜶, 𝜎𝑛

2𝐈𝑁 .

ො𝝐 = arg max
𝝐

𝑝 𝐱; 𝝐 where  𝑝 𝐱; 𝝐 =
1

𝜋𝜎𝑛
2 𝑁 𝑒

−
1

𝜎𝑛
2 𝐱−𝐀𝜶 2

. 

max
𝝐

𝑝 𝐱; 𝝐 = min
𝝐

𝐱 − 𝐀𝜶 2 ,

ො𝝐 = min
𝝐

𝐱 − 𝐀𝜶 2 ⇔ min
𝜼0,𝜼1

𝐏𝐀
⊥𝐱

2
and ෝ𝜶 = 𝐀H𝐀

−𝟏
𝐀H𝐱.



Introduction Ground-based GNSS-R2S signal model ConclusionDiffuse reflection

Back-up: CLEAN-RELAX estimator
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Back-up: CLEAN-RELAX estimator
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Back-up: CLEAN-RELAX estimator
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Back-up: CLEAN-RELAX estimator
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Back-up: CLEAN-RELAX estimator

153



Introduction Ground-based GNSS-R2S signal model ConclusionDiffuse reflection

Back-up: Alternate Projection estimator
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Back-up: Alternate Projection estimator
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Back-up: Alternate Projection estimator
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Back-up: Alternate Projection estimator

157



Introduction Ground-based GNSS-R2S signal model ConclusionDiffuse reflection

Back-up: Alternate Projection estimator
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Back-up: Alternate Projection estimator
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Back-up: Gruissan experiment 2S processing limits

160

• Gruissan experiment on GPS L5Q signal:

• CRB prediction: 𝐶𝑅𝐵ℎ = 0.27m.

• Height std dev: 𝜎ℎ = 0.41m, 2dB off.

• Possible explanations:

• Implementation: quantization error.

• CLEAN-RELAX is biased for the 
considered path separation (22m): 
signal crosstalk.

• Local replica used (RF filters).

• Unidentified events during recording.

• Specular reflection assumption:

Rayleigh Criterion: Δℎ >
𝜆

8 sin 𝑒
≈ 5cm. 
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• Close-to-ground hypotheses: i) 𝑏0 = 𝑏1 = 𝑏, ii) Δ𝜏 = 𝜏1 − 𝜏0 very small compare 
to the width of the cross-correlation triangle.

• Dual source maximum likelihood estimation:

• Third order Taylor approximation: 𝐿 𝜏0, Δ𝜏, 𝑏 = 𝐏𝐀𝐱
2 ≈ σ𝑛

3 𝐿𝑛 𝜏0, Δ𝜏, 𝑏 .

Back-up: Approximate MLE

161

ෝ𝜏0, Δ𝜏, 𝑏 = min
𝜏0,Δ𝜏,𝑏

𝐿 𝜏0, Δ𝜏, 𝑏 and ෝ𝜶 = 𝐀H𝐀
−𝟏
𝐀H𝐱.
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Back-up: Rayleigh criterion and reflection coherence

162

Δℎ

𝑒

Path separation
2Δℎ sin 𝑒

Rayleigh Criterion (rough)

Δℎ >
𝜆

8 sin 𝑒

Smooth increase transition erratic

[min]
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• Monte Carlo simulation (2000 runs).

• PD: probability of detecting the correct 
number of sources.

• 𝑃 + next procedure:

• Overshoot-and-decimate procedure:

Back-up: Impulse response detection tests results

163

SNR [dB] PD 𝐑𝐌𝐒𝐄𝝉 [m] 𝐂𝐑𝐁𝝉 [m]

20 0.29 17.32 15.55

23 0.57 12.77 11.01

26 0.76 9.04 7.79

SNR [dB] PD 𝐑𝐌𝐒𝐄𝝉 [m] 𝐂𝐑𝐁𝝉 [m]

20 0.08 9.86 15.55

23 0.46 9.71 11.01

26 0.93 8.34 7.79
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