

Deliberate model misspecification for weather radar signal Doppler spectrum moments estimation

Corentin Lubeigt

Météo-France, Toulouse, France.

Considered estimators

Context

In weather applications, ground based pulsed radars are used to estimate precipitation rates. The main features (moments of the Doppler spectrum) of the collected signals are the following:

- moment 0: mean power $P_0 \rightarrow$ reflectivity,
- moment 1: mean Doppler frequency $f_0 \rightarrow$ mean radial velocity of raindrops,
- moment 2: spectral width $\sigma_0 \to$ dispersion of radial velocities (seldom used).

$$L(\boldsymbol{\mu}) = \ln\left(|\mathbf{R}(\boldsymbol{\mu})|\right) + \operatorname{Tr}\left\{\mathbf{R}(\boldsymbol{\mu})^{-1}\widehat{\mathbf{R}}_{\mathbf{y}}\right\},$$

Mismatched unconditional maximum likelihood estimator

with the sample covariance matrix $\widehat{\mathbf{R}}_{\mathbf{y}} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}_k \mathbf{y}_k^H$ and the asymptotic covariance matrix $\mathbf{R}(\boldsymbol{\mu}) = \mathbf{B}_a(P_0, f_0) + \sigma_n^2 \mathbf{I}_N$. Then,

$$\widehat{f}_0 = rg \max_f \sum_{k=1}^K |r_k(f)|^2, \quad \widehat{P}_0 = rac{1}{KN(N-1)} \sum_{k=1}^K \left(|r_k(\widehat{f}_0)|^2 - \|\mathbf{y}_k\|^2
ight),$$

where $r_k(f) = \mathbf{y}_k^H \mathbf{d}(f)$.

Pulse-pair estimator

Wdely used in operational systems, it requires an estimate of the auto-correlation.

$$\widehat{A}_k(nT_s) = rac{1}{N - |n|} \sum_{i=0}^{N-1} [\mathbf{y}_k]_i^* [\mathbf{y}_k]_{i+n}.$$

$$\widehat{P}_{PP} = \frac{1}{K} \sum_{k=1}^K \widehat{A}_k(0), \quad \widehat{f}_{PP} = \frac{1}{2\pi T_s} \frac{1}{K} \sum_{k=1}^K \arg\left(\widehat{A}_k(T_s)\right).$$

Misspecification estimation

There is model misspecification when the assumed signal model (based on which an estimator is designed) differs from the true signal model.

- imperfect knowledge of the true data model,
- true data model known but the corresponding estimation problem is too involved.

Signal models

A general signal model for the problem at hand is the following:

$$y = x + w,$$

with $\mathbf{w} \sim \mathcal{CN}\left(\mathbf{0}, \sigma_n^2 \mathbf{I}_N\right)$, an additive white complex Gaussian noise of power σ_n^2 and \mathbf{x} the signal of interest.

True signal model

The shape of the weather signals power spectrum is assumed Gaussian.

$$\mathbf{x} \sim \mathcal{CN}\left(\mathbf{0}, \mathbf{B}_t(P_0, f_0, \sigma_0^2)\right),$$
 where,
$$\mathbf{B}_t(P_0, f_0, \sigma_0^2) = P_0 \mathbf{D}(f_0) \mathbf{C}(\sigma_0^2) \mathbf{D}(f_0)^H,$$

$$\mathbf{D}(f_0) = \operatorname{diag}\left(\ldots, \exp\left(j2\pi f_0(n-1)T_s\right), \ldots\right),$$

$$\left[\mathbf{C}(\sigma_0^2)\right]_{k,l} = \exp\left(-2\pi^2 \sigma_0^2 (k-l)^2 T_s^2\right).$$

Assumed signal model

One may ignore the presence of the spectral width σ_0 . The resulting power spectrum would shrink to a dirac function centered on f_0 .

$$\mathbf{x} \sim \mathcal{CN}\left(\mathbf{0}, \mathbf{B}_a(P_0, f_0)\right),$$
 where
$$\mathbf{B}_a(P_0, f_0) = P_0 \mathbf{d}(f_0) \mathbf{d}(f_0)^H,$$

$$\mathbf{d}(f_0) = (\dots, \exp\left(j2\pi f_0(n-1)T_s\right), \dots).$$

Results

Conclusions and perspectives

- ignoring σ_0 may be interesting for a limited range of spectral width value,
- the approach may be applied to other misspecifications: spectrum shape, noise,
- operational constraints should be accounted for: pulse repetition time