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Abstract

In ranging-based applications, ignoring the presence of multipath often leads to a bias upon the estimated

range, which actually originates from misspecified estimation problem because the assumed data signal

model, here without multipath, is not equal to the true one. Such misspecification also results in an

error covariance matrix around the biased estimates, so-called pseudotrue parameters, that differs from

the Cramér-Rao bound applied to the true model. This error covariance matrix can be lower bounded by

a misspecified Cramér-Rao bound (MCRB). In this work, a closed-form expression of the MCRB under

multipath conditions is proposed, which only depends on the baseband signal samples and both delay,

Doppler and complex amplitude pseudotrue parameters. These MCRB expressions are fundamental i)

to understand and characterize the impact of multipath conditions when not taken into account, ii) for

system/signal design, and iii) to derive new robust estimators. The proposed MCRBs are validated for a

representative navigation signal, comparing the resulting bounds with the mean square error obtained by

the misspecified maximum likelihood estimator with respect to the pseudotrue parameters.

Keywords: Delay/Doppler estimation, maximum likelihood, misspecified models, CRB, multipath.

1. Introduction

Multipath is still one of the most challenging propagation conditions in ranging-based systems, such

as radar, sonar or Globlal Navigation Satellite Systems (GNSS) [1, 2]. Indeed, its environment specific

behaviour and randomness are difficult to anticipate, and the corresponding system performance degradation

difficult to counteract. Several multipath mitigation strategies have been developed in both communities,5

ranging from hardware, e.g., choke ring antennas, to software/algorithmic solutions, where the latter typically

try to estimate the multipath contributions. In addition, the multipath mitigation problem may also impact

the signal design, or the corresponding performance metrics on how robust a given signal might be. Overall,
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for both system/signal design and the derivation of robust estimators, it is fundamental to have mathematical

tools to understand and characterize the impact of such multipath conditions when not taken into account.10

If one considers a nominal scenario (where multipath is not expected), or the use of low-cost receivers

that can not afford a multipath mitigation engine (i.e., standard GNSS receivers), multipath directly leads to

a ranging/positioning estimation performance degradation, induced by an estimation bias that the receiver

does not take into account. Indeed, from a system model perspective, ignoring the possible presence of

multipath implies to consider a line-of-sight (LOS) single source model instead of the true multi source15

signal. Such assumption is known as model misspecification, of interest in several disciplines.

The performance of misspecified estimators was first studied in [3, 4, 5], and the mathematical framework

to link such performance to the corresponding lower bounds was recently introduced in [6, 7]. In particular, it

was shown that the mispecified maximum likelihood (MML) estimator converges to a fix value that minimizes

the Kullback-Leibler divergence (KLD) between the true data model and the misspecified probability density20

functions (PDFs). Moreover, when the number of data points or the signal-to-noise ratio (SNR) are large

enough, its mean square error (MSE) converges to the so-called misspecified Cramér-Rao bound (MCRB)

[6, 7, 8]. Consequently a MML estimator is said to be misspecified-unbiased and asymptotically efficient.

The MCRB definition under the Gaussian assumption [6, 7] can be seen as an extension of the Slepian-

Bangs formulas [9], which allow to derive the Fisher information matrix for a given estimation problem.25

The standard Slepian-Bangs formulas (without mismatch) were the starting point to obtain closed-form

CRB expressions for different joint delay-Doppler estimation problems: i) single source model [10], or ii)

dual source model [11]. These compact CRB expressions were conveniently expressed as a function of the

baseband signal samples, therefore being easy to implement and useful for a plethora of signals/applications.

In this contribution we further study the delay/Doppler estimation problem, and complement the results in30

[10, 11] with the derivation of a delay/Doppler (misspecified) estimation closed-form MCRB expressions in

the presence of a multipath. Such lower bound allows to properly characterize the performance of standard

ranging-based systems/receivers not accounting for such propagation effect, which was not possible with

the results available in the literature. The resulting compact expressions are validated by exploiting the

asymptotic properties of the MML for a representative signal, namely, a GPS L1 C/A navigation signal [12].35

2. True and Misspecified Signal Models

Consider the transmission of an electromagnetic wave, traveling at the speed of light 𝑐, from a transmitter

to a receiver. In general, both transmitter and receiver are assumed to be in uniform linear motion such

that the distance between them can be approximated by a first order distance-velocity model [13]:

𝑑transmitter → receiver = 𝑐𝜏(𝑡) ≈ 𝑑 + 𝑣𝑡, and 𝜏(𝑡) ≈ 𝜏 + 𝑏𝑡, 𝜏 =
𝑑

𝑐
, 𝑏 =

𝑣

𝑐
, (1)
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where 𝑑 is the absolute distance between the two objects at time 𝑡 = 0, 𝑣 is the radial velocity between them,

𝜏 is the time-delay due to the propagation path and (1 − 𝑏) is the dilatation induced by the Doppler effect.

The electromagnetic wave is assumed to be a band-limited signal 𝑠(𝑡), with bandwidth 𝐵, transmitted over

a carrier frequency 𝑓𝑐, which covers several applications of interest. This signal can be expressed as

𝑠(𝑡) =
𝑁 ′

2∑︁
𝑛=𝑁 ′

1

𝑠

(
𝑛

𝐹𝑠

)
sinc

(
𝜋𝐹𝑠

(
𝑡 − 𝑛

𝐹𝑠

))
⇋ 𝑆( 𝑓 ) = 1

𝐹𝑠

𝑁 ′
2∑︁

𝑛=𝑁 ′
1

𝑠

(
𝑛

𝐹𝑠

)
𝑒
− 𝑗2𝜋𝑛

𝑓

𝐹𝑠 , − 𝐹𝑠

2
≤ 𝑓 ≤ 𝐹𝑠

2
, (2)

where 𝐹𝑠 ≥ 𝐵 is the sampling frequency, 𝑁 ′
1, 𝑁

′
2 in Z, 𝑁 ′

1 < 𝑁 ′
2 and ⇋ refers to the time-frequency pair.

2.1. True Signal Model

Using (1), and assuming a direct (indexed 0) and a reflected (indexed 1) propagation paths, the dual

source complex analytic signal at the output of the receiver’s antenna can be expressed as

𝑥𝑎 (𝑡) = 𝑑𝑎 (𝑡; 𝜽0) + 𝑑𝑎 (𝑡; 𝜽1) + 𝑤𝑎 (𝑡) , 𝑑𝑎 (𝑡; 𝜽 𝑖) = 𝜌𝑖𝑒
𝑗 𝜙𝑎,𝑖 𝑠((1 − 𝑏𝑖) (𝑡 − 𝜏𝑖))𝑒 𝑗𝜔𝑐 (1−𝑏𝑖)𝑡𝑒− 𝑗𝜔𝑐 𝜏𝑖 , (3)

with 𝑤𝑎 (𝑡) a zero-mean white complex circular Gaussian noise, and for 𝑖 ∈ {0, 1} 𝜏𝑖 is the time delay, 𝑏𝑖

is the Doppler coefficient and 𝜌𝑖, 𝜙𝑎,𝑖 are the amplitude and phase of the complex coefficients induced by

the propagation characteristics (fading, reflection, etc.), the polarization mismatches and the antenna gains.

Under the narrowband signal hypothesis, the Doppler effect on the band-limited baseband signal 𝑠(𝑡) can

be neglected: 𝑠((1 − 𝑏) (𝑡 − 𝜏)) ≈ 𝑠(𝑡 − 𝜏) [1, ch.9]. Then, the baseband output of the receiver’s Hilbert filter

containing the LOS signal and the reflected signal can be approximated

𝑥(𝑡) ≜ 𝑥𝑎 (𝑡)𝑒− 𝑗𝜔𝑐𝑡 = 𝑑 (𝑡; 𝜽0) + 𝑑 (𝑡; 𝜽1) + 𝑤(𝑡) , 𝑑 (𝑡; 𝜽 𝑖) ≜ 𝜌𝑖𝑒
𝑗 𝜙𝑖 𝑠(𝑡 − 𝜏𝑖)𝑒− 𝑗𝜔𝑐𝑏𝑖 (𝑡−𝜏𝑖) , (4)

where 𝜔𝑐 = 2𝜋 𝑓𝑐 and, for 𝑖 ∈ {0, 1}, 𝜽𝑇𝑖 = [𝜼𝑇
𝑖
, 𝜌𝑖 , 𝜙𝑖], 𝜼𝑇

𝑖
= [𝜏𝑖 , 𝑏𝑖], 𝜌𝑖 > 0 and 𝜙𝑖 = 𝜙𝑎,𝑖 − 𝜔𝑐 (1 + 𝑏𝑖)𝜏𝑖.

Considering the acquisition of 𝑁 = 𝑁2 − 𝑁1 + 1 (𝑁1 ≪ 𝑁 ′
1, 𝑁2 ≫ 𝑁 ′

2) samples at the sampling frequency

𝐹𝑠 = 𝐵 = 1/𝑇𝑠, the discrete signal model yields to the following dual source conditional signal model

(CSM)[11], x = 𝛼0a0 +𝛼1a1 +w, w ∼ CN(0, 𝜎2
𝑛I𝑁 ), with, for 𝑖 ∈ {0, 1}, 𝛼𝑖 = 𝜌𝑖𝑒

𝑗 𝜙𝑖 and, for 𝑛 ∈ [𝑁1, 𝑁2], a𝑇𝑖 =(
. . . , 𝑠(𝑛𝑇𝑠 − 𝜏𝑖)𝑒− 𝑗𝜔𝑐𝑏𝑖 (𝑛𝑇𝑠−𝜏𝑖) , . . .

)
, w𝑇 = (. . . , 𝑤(𝑛𝑇𝑠), . . . ) and x𝑇 = (. . . , 𝑥(𝑛𝑇𝑠), . . . ). Consequently,

the true data model PDF, noted 𝑝x (x; 𝜽0, 𝜽1), is written as,

𝑝x (x; 𝜽0, 𝜽1) = CN(𝛼0a0 + 𝛼1a1, 𝜎
2
𝑛I𝑁 ). (5)

2.2. Misspecified Signal Model

As previously stated, standard receiver architectures do not account for the presence of possible mul-

tipath conditions, which reduces to consider a single source signal model. Following the same reason-

ing as for the true signal model, it is straightforward to express the misspecified signal model as a sin-

gle source CSM, x = 𝜌𝑝𝑡𝑒
𝑗 𝜙𝑝𝑡a𝑝𝑡 + w, w ∼ CN(0, 𝜎2

𝑛I𝑁 ), with, 𝛼𝑝𝑡 = 𝜌𝑝𝑡𝑒
𝑗 𝜙𝑝𝑡 and, for 𝑛 ∈ [𝑁1, 𝑁2],
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a𝑇𝑝𝑡 =
(
. . . , 𝑠(𝑛𝑇𝑠 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑛𝑇𝑠−𝜏𝑝𝑡 ) , . . .

)
, where the subscript 𝑝𝑡 refers to pseudotrue, which will nec-

essarily depend on the true values 𝜽0 and 𝜽1, as discussed in the next section. Then, the misspecified data

model PDF, noted 𝑓x(x|𝜽 𝑝𝑡 ) is written as,

𝑓x (x; 𝜽 𝑝𝑡 ) = CN(𝛼𝑝𝑡a𝑝𝑡 , 𝜎
2
𝑛I𝑁 ), (6)

where 𝜽𝑇𝑝𝑡 = [𝜼𝑇𝑝𝑡 , 𝜌𝑝𝑡 , 𝜙𝑝𝑡 ] is the vector of pseudotrue parameters. See Table A.1 for a numerical example40

of true and pseudotrue values, which will be further studied in Section 5.

3. Mismatched Maximum Likelihood Estimator

3.1. Definition of the MML Estimator

Given the misspecified model (6), the MML is simply a single source ML estimator that aims at esti-

mating the vector of pseudotrue parameters 𝜽 𝑝𝑡 by maximizing the likelihood given the set of data x. This

maximization problem can be written as follows [14]:

𝜼̂𝑝𝑡 = argmax
𝜼

��𝑅x,a (𝜼)
��2 , 𝜌̂𝑝𝑡 =

��𝑅x,a (𝜼̂𝑝𝑡 )
�� , 𝜙𝑝𝑡 = arg

(
𝑅x,a (𝜼̂𝑝𝑡 )

)
, 𝑅x,a (𝜼) =

a𝐻 (𝜼)x
∥a(𝜼)∥ , (7)

with 𝑅x,a (𝜼) the normalized complex cross ambiguity function between the received signal x and a clean

replica a. Depending on the modulation used (BPSK or CBOC), the cross function can adopt different45

shapes [2, Sec. 4.3].

3.2. Properties and Applications

In the case of a misspecified configuration, that is, in presence of a multipath, the estimator’s output

in (7) can be biased, see [15, Sec. 9.5.2] where this bias is illustrated for different signals. Indeed, it is

well known that when the multipath excess delay with regard to the LOS signal delay (𝜏0 − 𝜏1) is small, the50

interference between both signals distorts the ambiguity function to be maximized, which in turn results in a

biased LOS time-delay estimate. Similarly, if the difference between LOS and multipath Doppler frequencies

is small, it can also lead to a bias on the estimated frequency.

Even if the MML appears to be biased with respect to (w.r.t.) the true LOS signal parameters, it has

the property to be a misspecified-unbiased estimator of the pseudotrue parameters vector 𝜽 𝑝𝑡 [7]. Moreover,

its MSE asymptotically tends to the MCRB, which makes it an asymptotically efficient estimator of the

pseudotrue parameters. Firstly, according to the MML property shown in [6] and [7], for the considered

observation models (5) and (6):

𝜽 𝑝𝑡 = argmin
𝜽

{𝐷 (𝑝x∥ 𝑓x)} ⇔


𝜼𝑝𝑡 = argmax
𝜼

{��𝑅𝛼0a0+𝛼1a1 ,a (𝜼)
��2}

𝛼𝑝𝑡 = 𝑅𝛼0a0+𝛼1a1 ,a (𝜼)
, (8)
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Proof. See the Technical Note [16, Sec. 2]. □

Even if there is no closed-form for (8), it can be easily evaluated numerically. Secondly, once the MCRB55

expression is obtained, a way to check its exactness is to run Monte Carlo simulations in order to compute

the MSE of the MML estimator, and compare it to the MCRB. This is what is done in Sec. 5.

4. Closed-Form MCRBs for Delay/Doppler Estimation under Multipath

In [6], the MCRB have been described as an extension of the Slepian-Bangs formulas, which were then

expressed as a combination of two information matrices in [7]: A(𝜽 𝑝𝑡 ) and B(𝜽 𝑝𝑡 ),

MCRB(𝜽 𝑝𝑡 ) = A(𝜽 𝑝𝑡 )−1B(𝜽 𝑝𝑡 )A(𝜽 𝑝𝑡 )−1 , (9)[
A(𝜽 𝑝𝑡 )

]
𝑝,𝑞

=
2

𝜎2
𝑛

Re
{
(𝛿a)𝐻

(
𝜕2𝛼𝑝𝑡a𝑝𝑡

𝜕𝜃𝑝𝜕𝜃𝑞

)}����
𝜽=𝜽𝑝𝑡

−
[
B(𝜽 𝑝𝑡 )

]
𝑝,𝑞

, (10)

[
B(𝜽 𝑝𝑡 )

]
𝑝,𝑞

=
2

𝜎2
𝑛

Re

{(
𝜕𝛼𝑝𝑡a𝑝𝑡

𝜕𝜃𝑝

)𝐻 (
𝜕𝛼𝑝𝑡a𝑝𝑡

𝜕𝜃𝑞

)}�����
𝜽=𝜽𝑝𝑡

, (11)

and 𝛿a ≜ 𝛼0a0 + 𝛼1a1 − 𝛼𝑝𝑡a𝑝𝑡 is the difference of the means between the true and the misspecified data

models. The covariance matrices between both models are assumed to be equal.60

4.1. Single Source Fisher Information Matrix

In the matrix B(𝜽 𝑝𝑡 ), one can recognize the Fisher Information Matrix of a single source CSM. A compact

expression of this matrix, that depends only on the baseband signal samples, has recently been derived in

[10] and is recalled hereafter for completeness,

B(𝜽 𝑝𝑡 ) =
2𝐹𝑠

𝜎2
𝑛

Re
{
QWQ𝐻

}
, W =


𝑤1 𝑤∗

2 𝑤∗
3

𝑤2 𝑊2,2 𝑤∗
4

𝑤3 𝑤4 𝑊3,3


, (12)

with Q defined in (A.3), and the elements in W can be expressed w.r.t. the baseband signal samples,

𝑤1 =
1

𝐹𝑠

s𝐻s, 𝑤2 =
1

𝐹2
𝑠

s𝐻Ds, 𝑤3 =
1

𝐹𝑠

s𝐻VΔ,1 (0)s, 𝑤4 =
1

𝐹𝑠

s𝐻DVΔ,1 (0)s, (13)

𝑊2,2 =
1

𝐹3
𝑠

s𝐻D2s, 𝑊3,3 = 𝐹𝑠s
𝐻VΔ,2 (0)s, (14)

where s, the baseband samples vector, is defined in (A.17), D in (A.18), VΔ,1 in (A.19) and VΔ,2 in (A.20).

4.2. Model Mismatch Information Matrix

The matrix A(𝜽 𝑝𝑡 ) accounts for the model misspecification. Its elements can also be expressed in a

compact form as a function of the baseband samples as,[
A(𝜽 𝑝𝑡 )

]
𝑝,𝑞

=
2𝐹𝑠

𝜎2
𝑛

Re
{[
Q𝑞

]
𝑝,.

WA
}
−
[
B(𝜽 𝑝𝑡 )

]
𝑝,𝑞

, (15)
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where
[
Q𝑞

]
𝑝,.

is the 𝑝-th row of the matrix Q𝑞, WA is defined as WA = 𝛼0w
A (𝜼0) + 𝛼1w

A (𝜼1) − 𝛼𝑝𝑡w
A (𝜼𝑝𝑡 )

and, for 𝑘 ∈ {0, 1, 𝑝𝑡}, Δ𝜏𝑘 = 𝜏𝑘−𝜏𝑝𝑡 , Δ𝑏𝑘 = 𝑏𝑘−𝑏𝑝𝑡 , wA (𝜼𝑘) is a six-element column vector whose components

are

wA
1 (𝜼𝑘)∗ =

1

𝐹𝑠

s𝐻U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,0

(
Δ𝜏𝑘

𝑇𝑠

)
s 𝑒 𝑗𝜔𝑐𝑏𝑘Δ𝜏𝑘 , (16)

wA
2 (𝜼𝑘)∗ =

1

𝐹2
𝑠

s𝐻DU

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,0

(
Δ𝜏𝑘

𝑇𝑠

)
s 𝑒 𝑗𝜔𝑐𝑏𝑘Δ𝜏𝑘 , (17)

wA
3 (𝜼𝑘)∗ =

1

𝐹3
𝑠

s𝐻D2U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,0

(
Δ𝜏𝑘

𝑇𝑠

)
s 𝑒 𝑗𝜔𝑐𝑏𝑘Δ𝜏𝑘 , (18)

wA
4 (𝜼𝑘)∗ =

(
−s𝐻U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,1

(
Δ𝜏𝑘

𝑇𝑠

)
s + 𝑗𝜔𝑐Δ𝑏𝑘

𝐹𝑠

s𝐻U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,0

(
Δ𝜏𝑘

𝑇𝑠

)
s

)
𝑒 𝑗𝜔𝑐𝑏𝑘Δ𝜏𝑘 , (19)

wA
5 (𝜼𝑘)∗ =

(
− 1

𝐹𝑠

s𝐻U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,0

(
Δ𝜏𝑘

𝑇𝑠

)
s − 1

𝐹𝑠

s𝐻DU

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,1

(
Δ𝜏𝑘

𝑇𝑠

)
s

+ 𝑗 𝜔𝑐Δ𝑏𝑘

𝐹2
𝑠

s𝐻DU

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,0

(
Δ𝜏𝑘

𝑇𝑠

)
s

)
𝑒 𝑗𝜔𝑐𝑏𝑘Δ𝜏𝑘 , (20)

wA
6 (𝜼𝑘)∗ =

(
−𝐹𝑠s

𝐻U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,2

(
Δ𝜏𝑘

𝑇𝑠

)
s − 𝑗2𝜔𝑐Δ𝑏𝑘s

𝐻U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,1

(
Δ𝜏𝑘

𝑇𝑠

)
s

− (𝜔𝑐Δ𝑏𝑘)2
𝐹𝑠

s𝐻U

(
𝑓𝑐Δ𝑏𝑘

𝐹𝑠

)
VΔ,0

(
Δ𝜏𝑘

𝑇𝑠

)
s

)
𝑒 𝑗𝜔𝑐𝑏𝑘Δ𝜏𝑘 , (21)

Proof. See Appendix A and the associated Technical Note [16, Sec. 1]. □

5. Validation and Discussions65

5.1. Methodology and Simulation Set-Up

In order to validate the MCRB expressions, the properties of the MML (see Sec. 3.2) are exploited.

Indeed, the MML being an asymptotically efficient misspecified-unbiased estimator of 𝜽 𝑝𝑡 , its MSE evaluated

w.r.t. the pseudotrue parameters is expected to asymptotically converge to the corresponding MCRB.

A representative GPS L1 C/A navigation signal is considered, sampled at 8 MHz for 4ms with a single70

multipath. The MML MSE is obtained from 2000 Monte Carlo runs, for different SNR values. The SNR

is defined at the output of the matched filter w.r.t. the LOS source, SNRout =
𝜌2
0s

𝐻s

𝜎2
𝑛

. The true parameters

values are gathered in Table A.1, where the last column was obtained by running a noiseless simulation.

Since the MML is known to be misspecified-unbiased, the estimated parameters in the noiseless case directly

correspond to the pseudotrue parameters.75

Two RMSEs are computed, one w.r.t. the true parameters and the other one w.r.t. the pseudotrue

parameters, which are defined for the 𝑖-th element of the parameters’ vector 𝜽 as follows,

RMSE( [𝜽0]𝑖) ≜ 𝐸

{(
[𝜽̂]𝑖 − [𝜽0]𝑖

)2}
, RMSE( [𝜽 𝑝𝑡 ]𝑖) ≜ 𝐸

{(
[𝜽̂]𝑖 − [𝜽 𝑝𝑡 ]𝑖

)2}
, (22)
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In addition, the bias induced by the model mismatch is also displayed in the results, which is defined for

any element 𝑖 of the parameters’ vector 𝜽 as bias( [𝜽]𝑖) = [𝜽 𝑝𝑡 ]𝑖 − [𝜽0]𝑖. Finally, the MCRBs are compared

to the dual source CRBs corresponding to the true signal model (5), which were derived in [11].

5.2. Results

Figures A.1, A.2, A.3, A.4 show the RMSEs (22) for each of the MML estimates: 𝜏, 𝐹𝑑 = 𝑏𝐹𝑐, 𝜌 and 𝜙,80

w.r.t. the true and pseudotrue parameters, which are displayed along with i) their corresponding square-root

MCRBs (9), ii) the bias induced by the multipath, and iii) the dual source CRB for the corresponding LOS

parameter estimation (i.e., 2S-
√

CRB).

First, notice that in all the figures, the MML estimators’ RMSE w.r.t. the pseudotrue parameters

converges to the proposed MCRBs when the SNR gets large enough, which is in accordance with the85

theory [8]. This proves the validity and exactness of the new MCRBs derived in this contribution, and

the asymptotical efficiency of the MML estimator w.r.t. the pseudotrue parameters. Second, the MML

estimators’ RMSE w.r.t. the true parameters converges to the corresponding
√

bias2 + MCRB, that is, there

is a clear performance degradation induced by the bias term, which for large SNR values dominates in front

of the MCRB (
√

bias2 + MCRB → bias). A typical GNSS receiver operation point is around SNR=25 dB90

at the output of the matched filter. For instance, in the case of the time-delay that is the main parameter

of interest to solve the positioning problem, in this scenario the performance degradation induced by the

multipath is around 4.5m (3m → 7.5m). Also, it is interesting to see that the 2S-CRB is above the MCRB

for all the estimated parameters: using the MML would then allow the user to get a biased estimate but

with a smaller variance. Last point is that the phase estimate is much less impacted by the multipath.95

6. Conclusion

The multipath effect on the joint delay-Doppler estimation is entirely characterized by the bias term (first

order) and MCRB (second order). The multipath-induced biased estimates correspond to the pseudotrue

parameters and the resulting lower bound, that differs from the multipath-free scenario, is directly the

MCRB. In this study, closed-form MCRB expressions, which only depend on the baseband signal samples,100

were derived and validated through simulations. This opens the door to a proper ranging-based receiver

characterization under multipath conditions, which was a missing theoretical tool in the literature. This

bound can be further exploited for signal design and robust estimators derivations for multipath mitigation.
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Appendix A. Computation of A(𝜽𝒑𝒕)

Appendix A.1. Model Means Difference Term

To compute the MCRB, the terms are first considered under their continuous time expression. Then if

𝑎(𝑡; 𝜼) = 𝑠(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑏 (𝑡−𝜏) , then

𝛿𝑎(𝑡) = 𝛼0𝑎(𝑡; 𝜼0) + 𝛼1𝑎(𝑡; 𝜼1) − 𝛼𝑝𝑡𝑎(𝑡; 𝜼𝑝𝑡 ) = Ã(𝑡)𝜶̃ , (A.1)

Ã(𝑡) =
[
𝑎(𝑡; 𝜼0), 𝑎(𝑡; 𝜼1), 𝑎(𝑡; 𝜼𝑝𝑡 )

]
, 𝜶̃ =

(
𝜌0𝑒

𝑗 𝜙0 , 𝜌1𝑒
𝑗 𝜙1 ,−𝜌𝑝𝑡𝑒

𝑗 𝜙𝑝𝑡
)𝑇

. (A.2)

Therefore, the discrete expression of this model mismatch term is as: 𝛿a = Ã𝜶̃ =
[
a0, a1, a𝑝𝑡

]
𝜶̃.

Appendix A.2. Differential Terms110

Keeping the continuous time expression for the computation of the successive derivatives, one can easily

obtain the first derivative, 𝜕𝛼𝑎 (𝑡;𝜼)
𝜕𝜽 = QD (1) (𝑡, 𝜏)𝑒− 𝑗𝜔𝑐𝑏 (𝑡−𝜏) , with

Q =



𝑗𝛼𝜔𝑐𝑏 0 −𝛼

0 − 𝑗𝛼𝜔𝑐 0

𝑒 𝑗 𝜙 0 0

𝛼 0 0


, D (1) (𝑡; 𝜏) =


𝑠(𝑡 − 𝜏)

(𝑡 − 𝜏)𝑠(𝑡 − 𝜏)

𝑠 (1) (𝑡 − 𝜏)


. (A.3)

Similarly the second derivative can be written in a matrix form as,

𝜕2𝛼𝑎(𝑡; 𝜼)
𝜕𝜽𝜕𝜽𝑇

=

[
Q1 Q2 Q3 Q4

] (
D (2) (𝑡; 𝜼) ⊗ I4

)
𝑒− 𝑗𝜔𝑐𝑏 (𝑡−𝜏) , (A.4)

with

Q1 =



−𝛼𝜔2
𝑐𝑏

2 0 0 − 𝑗2𝛼𝜔𝑐𝑏 0 𝛼

𝑗𝛼𝜔𝑐 𝛼𝜔2
𝑐𝑏 0 0 𝑗𝛼𝜔𝑐 0

𝑗 𝑒 𝑗 𝜙𝜔𝑐𝑏 0 0 −𝑒 𝑗 𝜙 0 0

−𝛼𝜔𝑐𝑏 0 0 − 𝑗𝛼 0 0


, (A.5)

Q2 =



𝑗𝛼𝜔𝑐 𝛼𝜔2
𝑐𝑏 0 0 𝑗𝛼𝜔𝑐 0

0 0 −𝛼𝜔2
𝑐 0 0 0

0 − 𝑗 𝑒 𝑗 𝜙𝜔𝑐 0 0 0 0

0 𝛼𝜔𝑐 0 0 0 0


,Q3 =



𝑗 𝑒 𝑗 𝜙𝜔𝑐𝑏 0 0 −𝑒 𝑗 𝜙 0 0

0 − 𝑗 𝑒 𝑗 𝜙𝜔𝑐 0 0 0 0

0 0 0 0 0 0

𝑗 𝑒 𝑗 𝜙 0 0 0 0 0


,

(A.6)

Q4 =



−𝛼𝜔𝑐𝑏 0 0 − 𝑗𝛼 0 0

0 𝛼𝜔𝑐 0 0 0 0

𝑗 𝑒 𝑗 𝜙 0 0 0 0 0

−𝛼 0 0 0 0 0


,D (2) (𝑡; 𝜏) =



𝑠(𝑡 − 𝜏)

(𝑡 − 𝜏)𝑠(𝑡 − 𝜏)

(𝑡 − 𝜏)2𝑠(𝑡 − 𝜏)

𝑠 (1) (𝑡 − 𝜏)

(𝑡 − 𝜏)𝑠 (1) (𝑡 − 𝜏)

𝑠 (2) (𝑡 − 𝜏)


=



𝑑1 (𝑡)

𝑑2 (𝑡)

𝑑3 (𝑡)

𝑑4 (𝑡)

𝑑5 (𝑡)

𝑑6 (𝑡)


. (A.7)
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A way to write this Hessian matrix under its discrete form is,[
𝜕2𝛼a𝑇

𝜕𝜽𝜕𝜽𝑇

]
𝑝,𝑞

=
𝜕2𝛼a𝑇

𝜕𝜃𝑝𝜕𝜃𝑞
=
[
Q𝑞

]
𝑝,.

[
. . . , D (2) (𝑛𝑇𝑠; 𝜼)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏) , . . .

]
𝑁1≤𝑛≤𝑁2

, (A.8)

where
[
Q𝑞

]
𝑝,.

is the 𝑝-th row of the matrix Q𝑞.

Appendix A.3. Integrals Computation

The first term of the information matrix A(𝜽 𝑝𝑡 ) is simply the product of the model means difference

term and the Hessian matrix, which can be expressed element-wise as

𝛿a𝐻
[
𝜕2𝛼a

𝜕𝜽𝜕𝜽𝑇

]
𝑝,𝑞

=

(
Ã𝜶̃

)𝐻 ( [
Q𝑞

]
𝑝,.

[
. . . , D (2) (𝑛𝑇𝑠; 𝜼)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏) , . . .

]
𝑁1≤𝑛≤𝑁2

)𝑇
(A.9)

=
[
Q𝑞

]
𝑝,.

∑︁
𝑘∈{0,1, 𝑝𝑡 }

𝛼̃∗
𝑘

𝑁2∑︁
𝑛=𝑁1



𝑎(𝑛𝑇𝑠; 𝜼𝑘)∗𝑑1 (𝑛𝑇𝑠)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏)

𝑎(𝑛𝑇𝑠; 𝜼𝑘)∗𝑑2 (𝑛𝑇𝑠)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏)

𝑎(𝑛𝑇𝑠; 𝜼𝑘)∗𝑑3 (𝑛𝑇𝑠)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏)

𝑎(𝑛𝑇𝑠; 𝜼𝑘)∗𝑑4 (𝑛𝑇𝑠)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏)

𝑎(𝑛𝑇𝑠; 𝜼𝑘)∗𝑑5 (𝑛𝑇𝑠)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏)

𝑎(𝑛𝑇𝑠; 𝜼𝑘)∗𝑑6 (𝑛𝑇𝑠)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏)


. (A.10)

Each term of the column vector is then a sum that can be seen as an integral when the number of samples

tends to infinity, lim(𝑁1 ,𝑁2)→(−∞,+∞) 𝑇𝑠
∑𝑁2

𝑛=𝑁1
𝑎(𝑛𝑇𝑠; 𝜼𝑘)∗𝑑𝑖 (𝑛𝑇𝑠)𝑒− 𝑗𝜔𝑐𝑏 (𝑛𝑇𝑠−𝜏) =

∫
R
𝑎(𝑡; 𝜼𝑘)∗𝑑𝑙 (𝑡)𝑒− 𝑗𝜔𝑐𝑏 (𝑡−𝜏)d𝑡,

therefore, lim(𝑁1 ,𝑁2)→(−∞,+∞) 𝛿a
𝐻
[
𝜕2𝛼a
𝜕𝜽𝜕𝜽𝑇

]
𝑝,𝑞

= 𝐹𝑠

[
Q𝑞

]
𝑝,.

∑
𝑘∈{0,1, 𝑝𝑡 } 𝛼̃

∗
𝑘
wA (𝜼𝑘). Finally, thanks to the Shan-

non Theorem for band-limited signals, the computation of the matrix A(𝜽 𝑝𝑡 ) and then of the MCRB reduces

to the six following integrals, for 𝑘 ∈ {0, 1, 𝑝𝑡},

𝑤A
1 (𝜼𝑘) =

∫
R
𝑠(𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑘)∗𝑒− 𝑗𝜔𝑐 (𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )−𝑏𝑘 (𝑡−𝜏𝑘 ))d𝑡, (A.11)

𝑤A
2 (𝜼𝑘) =

∫
R
(𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑘)∗𝑒− 𝑗𝜔𝑐 (𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )−𝑏𝑘 (𝑡−𝜏𝑘 ))d𝑡, (A.12)

𝑤A
3 (𝜼𝑘) =

∫
R
(𝑡 − 𝜏𝑝𝑡 )2𝑠(𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑘)∗𝑒− 𝑗𝜔𝑐 (𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )−𝑏𝑘 (𝑡−𝜏𝑘 ))d𝑡, (A.13)

𝑤A
4 (𝜼𝑘) =

∫
R
𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑘)∗𝑒− 𝑗𝜔𝑐 (𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )−𝑏𝑘 (𝑡−𝜏𝑘 ))d𝑡, (A.14)

𝑤A
5 (𝜼𝑘) =

∫
R
(𝑡 − 𝜏𝑝𝑡 )𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑘)∗𝑒− 𝑗𝜔𝑐 (𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )−𝑏𝑘 (𝑡−𝜏𝑘 ))d𝑡, (A.15)

𝑤A
6 (𝜼𝑘) =

∫
R
𝑠 (2) (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑘)∗𝑒− 𝑗𝜔𝑐 (𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )−𝑏𝑘 (𝑡−𝜏𝑘 ))d𝑡, (A.16)

These integrals are further developed and expressed w.r.t. the baseband samples in [16], which leads to the

results in (16)-(21). To compute them, the following elements are involved,

s = (. . . , 𝑠(𝑛𝑇𝑠), . . .)𝑇𝑁1≤𝑛≤𝑁2
, 𝝂( 𝑓 ) =

(
. . . , 𝑒 𝑗2𝜋 𝑓 𝑛, . . .

)𝑇
𝑁1≤𝑛≤𝑁2

, (A.17)
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U (𝑝) = diag
(
. . . , 𝑒− 𝑗2𝜋𝑝𝑛, . . .

)
𝑁1≤𝑛≤𝑁2

, D = diag (. . . , 𝑛, . . .)𝑁1≤𝑛≤𝑁2
, (A.18)

VΔ,0 (𝑞) =
∫ 1

2

− 1
2

𝝂( 𝑓 )𝝂𝐻 ( 𝑓 )𝑒− 𝑗2𝜋 𝑓 𝑞d 𝑓 , VΔ,1 (𝑞) = 𝑗2𝜋

∫ 1
2

− 1
2

𝑓 𝝂( 𝑓 )𝝂𝐻 ( 𝑓 )𝑒− 𝑗2𝜋 𝑓 𝑞d 𝑓 , (A.19)

VΔ,2 (𝑞) = 4𝜋2
∫ 1

2

− 1
2

𝑓 2𝝂( 𝑓 )𝝂𝐻 ( 𝑓 )𝑒− 𝑗2𝜋 𝑓 𝑞d 𝑓 . (A.20)
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Table A.1: Simulation settings for GPS L1 C/A signal

𝜽0 𝜽1 𝜽 𝑝𝑡

𝜏 [C/A chip] 0 0.25 0.0238

𝐹𝑑 [Hz] 0 100 24

𝜌 [-] 1 0.5 1.2342

𝜙 [rad] 0 0.2618 0.0351
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Figure A.1: MML estimator RMSE for time-delay 𝜏 w.r.t. true and pseudotrue parameters, and the corresponding bounds.

The results are converted in meters by multiplying them by the speed of light.

Figure A.2: MML estimator RMSE for Doppler 𝐹𝑑 w.r.t. true and pseudotrue parameters, and the corresponding bounds.
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Figure A.3: MML estimator RMSE for amplitude 𝜌 w.r.t. true and pseudotrue parameters, and the corresponding bounds.

Figure A.4: MML estimator RMSE for phase 𝜙 w.r.t. true and pseudotrue parameters, and the corresponding bounds.
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