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1 Derivation of Convolution Terms Using the Fourier Transform
Properties

Let s(t) be a band-limited signal of bandwidth smaller than B sampled at frequency Fs = 1/Ts over
N = N2 − N1 samples. The aim of this note is to provide details on the evaluation of the following
integral terms, for (p, q) ∈ [1, P ]2,

[
Wδ

1

]
p,q

=

∫
R
s(t− τp)s(t− τq)

∗dt (1)[
Wδ

2

]
p,q

=

∫
R
(t− τp)s(t− τp)s(t− τq)

∗dt (2)[
Wδ

3

]
p,q

=

∫
R
s(1)p (t− τp)s(t− τq)

∗dt (3)[
Wδ

4

]
p,q

=

∫
R
(t− τq)s

(1)(t− τp)s(t− τq)
∗dt (4)[

Wδ
2,2

]
p,q

=

∫
R
(t− τp)(t− τq)s(t− τp)s(t− τq)dt (5)[

Wδ
3,3

]
p,q

=

∫
R
s(1)(t− τp)s

(1)(t− τq)dt (6)

where τp = τ + (p− 1)Ts, τq = τ + (q − 1)Ts and τ are time delays, fc is carrier frequency and the
superscript (1) refers to the first time derivative of signal s(t).

1.1 Prior Considerations
First the Fourier transform of a set of functions are to be evaluated. Remembering that the signal is
band-limited of band B ≤ Fs, one has:

s(t) ⇌ FT {s(t)} (f) ≜ S(f) =

(
1

Fs

N2∑
n=N1

s(nTs)e
−j2πfnTs

)
1[−Fs

2
;Fs

2 ]
(7)
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A first expression is a simple application of the time shift relation when using the Fourier trans-
form of a delayed signal:

(t− τ)s(t− τ) = ts(t− τ)− τs(t− τ) (8)

Then,

FT {(t− τ)s(t− τ)} =
j

2π

d
df
(
S(f)e−j2πfτ

)
− τS(f)e−j2πfτ

=
j

2π

d
df

(S(f))e−j2πfτ (9)

Besides, with the superscript (1) referring to the first time derivative,

FT
{
s(1)(t− τ)

}
= j2πfS(f)e−j2πfτ (10)

1.2 Coefficients of Wδ

1.2.1 Matrix Wδ
1

[
Wδ

1

]
p,q

=

∫
R
s(t− τp)s(t− τq)

∗dt

=

∫
R
s(u− (p− q)Ts)s(u)

∗du

=

∫ Fs
2

−Fs
2

S(f)e−j2πf(p−q)TsS(f)∗df ,

and, using the sum definition of the Fourier transform (7) as a matrices product,

[
Wδ

1

]
p,q

=
1

Fs

∫ 1
2

− 1
2

(
sTν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df .

Hence [
Wδ

1

]
p,q

=
1

Fs

sHV∆,0(p− q)s (11)

with

s =
(
. . . s(nTs) . . .

)T
N1≤n≤N2

(12)

ν(f) =
(
. . . ej2πfn . . .

)T
N1≤n≤N2

(13)

V∆,0 (n) =

∫ 1
2

− 1
2

ν(f)νH(f)e−j2πfndf (14)

[
V∆,0(n)

]
k,l

=

∫ 1
2

− 1
2

ej2πf(k−l−n)df = sinc(k − l − n) =

{
1 k − l = n,
0 else (15)
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1.2.2 Matrix Wδ
2

[
Wδ

2

]
p,q

=

∫
R
(t− τp)s(t− τp)s(t− τq)

∗dt

=

∫
R
(u− (p− q)Ts)s(u− (p− q)Ts)︸ ︷︷ ︸

(9)

s(u)∗du

=

∫ Fs
2

−Fs
2

j

2π

d
df

(S(f)) e−j2πfp−q)TsS(f)∗df

=

∫ 1
2

− 1
2

(
sTDν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df

=
1

F 2
s

sH

(∫ 1
2

− 1
2

ν(f)νH(f)e−j2πf(p−q)df

)
Ds .

Hence [
Wδ

2

]
p,q

=
1

F 2
s

sHV∆,0(p− q)Ds (16)

with V∆,0 defined in (14) and
D =

(
. . . n . . .

)T
N1≤n≤N2

(17)

1.2.3 Matrix Wδ
3

[
Wδ

3

]
p,q

=

∫
R
s(1)(t− τp)s(t− τq)

∗dt

=

∫
R
s(1)(u− (p− q)Ts)︸ ︷︷ ︸

(10)

s(u)∗du

=

∫ Fs
2

−Fs
2

j2πfS(f)e−j2πf(p−q)TsS(f)∗df

=

∫ 1
2

− 1
2

j2πf
(
sTν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df

= sH

(
j2π

∫ 1
2

− 1
2

fν(f)νH(f)e−j2πf(p−q)df

)
s .

Hence [
Wδ

3

]
p,q

= sHV∆,1(p− q)s (18)

with

V∆,1 (n) = j2π

∫ 1
2

− 1
2

fν(f)νH(f)e−j2πfndf (19)
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and [
V∆,1(n)

]
k,l

= j2π

∫ 1
2

− 1
2

fej2πf(k−l−n)df

=
1

k − l − n
(cos (π(k − l − n))− sinc (k − l − n))

=

{
0 if k − l = n,
(−1)|k−l−n|/(k − l − n) else

(20)

1.2.4 Matrix Wδ
4

[
Wδ

4

]
p,q

=

∫
R
(t− τq)s

(1)(t− τp)s(t− τq)
∗dt

=

∫
R
s(1)(u− (p− q)Ts)︸ ︷︷ ︸

(10)

(us(u))∗ du

=

∫ Fs
2

−Fs
2

j2πfS(f)e−j2πf(p−q)Ts

(
j

2π

d
df

(S(f))

)∗

df

=
1

Fs

∫ 1
2

− 1
2

j2πf
(
sTν(f)∗

)
e−j2πf(p−q)

(
sHDν(f)

)
df

=
1

Fs

sHD

(
j2π

∫ 1
2

− 1
2

fν(f)νH(f)e−j2πf(p−q)df

)
s .

Hence [
Wδ

4

]
p,q

=
1

Fs

sHDV∆,1(p− q)s (21)

with D and V∆,1 defined in (17) and (19) respectively.

1.2.5 Matrix Wδ
2,2

[
Wδ

2,2

]
p,q

=

∫
R
(t− τp)(t− τq)s(t− τp)s(t− τq)dt

=

∫
R
(u− (p− q)Ts)s(u−∆τ)︸ ︷︷ ︸

(9)

(us(u))∗ du

=

∫ Fs
2

−Fs
2

j

2π

d
df

(S(f)) e−j2πf(p−q)Ts

(
j

2π

d
df

(S(f))

)∗

df

=
1

F 3
s

∫ 1
2

− 1
2

(
sTDν(f)∗

)
e−j2πf(p−q)

(
sHDν(f)

)
df

= sHD

(∫ 1
2

− 1
2

ν(f)νH(f)e−j2πf(p−q)df

)
Ds .
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Hence [
Wδ

2,2

]
p,q

= sHDV∆,0(p− q)Ds (22)

with V∆,0 and D defined in (14) and (17) respectively.

1.2.6 Matrix Wδ
3,3

[
Wδ

3,3

]
p,q

=

∫
R
s(1)(t− τp)s

(1)(t− τq)dt

=

∫
R
s(1)(u− (p− q)Ts)︸ ︷︷ ︸

(10)

s(1)(u)∗du

=

∫ Fs
2

−Fs
2

(
j2πfS(f)e−j2πf(p−q)Ts

)
(j2πfS(f))∗ df

= Fs

∫ 1
2

− 1
2

4π2f 2
(
sTν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df

= Fss
H

(
4π2

∫ 1
2

− 1
2

f 2ν(f)νH(f)e−j2πf(p−q)df

)
s .

Hence [
Wδ

3,3

]
p,q

= Fss
HV∆,2(p− q)s (23)

with

V∆,2 (n) = 4π2

∫ 1
2

− 1
2

f 2ν(f)νH(f)e−j2πfndf (24)

and [
V∆,2 (n)

]
k,l

= π2sinc (k − l − n)

+ 2
cos (π(k − l − n))− sinc (k − l − n)

(k − l − n)2
. (25)

=

{
π2/3 if k − l = n,
(−1)|k−l−n|2/(k − l − n)2 else

(26)

2 Details on Orthogonal Projectors Upon Subspaces of a Vector
Subspace

Let AM = [. . . , am, . . .] for m ∈ [1,M ] a full-rank matrix of M vectors. The projector upon the vec-
tor subspace defined by the column of AM is defined by PAM

= AM

(
AH

MAM

)−1
AH

M . Considering
AM = [AM−1, am] where AM−1 is the matrix AM without the m-th column, the aim of the following
developments is to decompose this projector into two projectors: one over AM−1 and the other over
am. A first approach is to simply separate the two components:

PAM
= [AM−1, am]

(
[AM−1, am]

H [AM−1, am]
)−1

[AM−1, am]
H (27)

5



Developing the inverse term,(
[AM−1, am]

H [AM−1, am]
)−1

=

[
AH

M−1AM−1 AH
M−1am

aH
mAM−1 aH

mam

]−1

=

[
B11 B12

B21 B22

]
(28)

By resorting to the block matrix inversion lemma [1, Sec. 9.1],[
A11 A12

A21 A22

]−1

=

[ (
A11 −A12A

−1
22 A21

)−1 −A−1
11 A12

(
A22 −A21A

−1
11 A12

)−1

−
(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11

(
A22 −A21A

−1
11 A12

)−1

]
(29)

one gets the submatrices, defined in (28):

B11 =
(
AH

M−1AM−1 −AH
M−1am

(
aH
mam

)−1
aH
mAM−1

)−1

=
(
AH

M−1

(
I− am

(
aH
mam

)−1
aH
m

)
AM−1

)−1

=
(
AH

M−1P
⊥
am

AM−1

)−1
(30)

B21 = −
(
aH
mam − aH

mAM−1

(
AH

M−1AM−1

)−1
AH

M−1am

)−1

aH
mAM−1

(
AH

M−1AM−1

)−1

= −
(
aH
m

(
I−AM−1

(
AH

M−1AM−1

)−1
AH

M−1

)
am

)−1

aH
mAM−1

(
AH

M−1AM−1

)−1

= −
(
aH
mP

⊥
AM−1

am

)−1

aH
mAM−1

(
AH

M−1AM−1

)−1
(31)

B12 = −
(
AH

M−1AM−1

)−1
AH

M−1am

(
aH
mam − aH

mAM−1

(
AH

M−1AM−1

)−1
AH

M−1am

)−1

(32)

B22 =
(
aH
mam − aH

mAM−1

(
AH

M−1AM−1

)−1
AH

M−1am

)−1

=
(
aH
m

(
I−AM−1

(
AH

M−1AM−1

)−1
AH

M−1

)
am

)−1

=
(
aH
mP

⊥
AM−1

am

)−1

(33)

Using the PosDef identity [1, eq. (185)] for P and R invertible, definite positive matrices and B:(
P−1 +BHR−1B

)−1
BHR−1 = PBH

(
BPBH +R

)−1
(34)

⇔−
(
P−1 −BHR−1B

)−1
BHR−1 = −PBH

(
R−BPBH

)−1
, (35)

for P =
(
AH

M−1AM−1

)−1, R = aH
mam and B = aH

mAM−1, (35) allows to rewrite B12 as:

B12 = −
(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1am

(
aH
mam

)−1
(36)

Hence, the computation goes on,(
[AM−1, am]

H [AM−1, am]
)−1

[AM−1, am]
H (37)

=

 (
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1 −
(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1am

(
aH
mam

)−1
aH
m

−
(
aH
mP

⊥
AM−1

am

)−1

aH
mAM−1

(
AH

M−1AM−1

)−1
AH

M−1 +
(
aH
mP

⊥
AM−1

am

)−1

aH
m

 (38)
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and

PAM
= AM−1

((
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1 −
(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1am

(
aH
mam

)−1
aH
m

)
+ am

(
−
(
aH
mP

⊥
AM−1

am

)−1

aH
mAM−1

(
AH

M−1AM−1

)−1
AH

M−1 +
(
aH
mP

⊥
AM−1

am

)−1

aH
m

)
,

(39)

that is, PAM
= P̃AM−1

+ P̃am where,

P̃AM−1
= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1 −AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1am

(
aH
mam

)−1
aH
m

= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1

(
I− am

(
aH
mam

)−1
aH
m

)
= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1P
⊥
am

(40)

P̃am = −am

(
aH
mP

⊥
AM−1

am

)−1

aH
mAM−1

(
AH

M−1AM−1

)−1
AH

M−1 + am

(
aH
mP

⊥
AM−1

am

)−1

aH
m

= am

(
aH
mP

⊥
AM−1

am

)−1

aH
m

(
I−AM−1

(
AH

M−1AM−1

)−1
AH

M−1

)
= am

(
aH
mP

⊥
AM−1

am

)−1

aH
mP

⊥
AM−1

. (41)

This decomposition is not orthogonal, one cannot show that P̃AM−1
P̃am = 0. Here, the aim is to

obtain a decomposition including PAM−1
, a first step is to project P̃am over this subspace:

P̃am =
(
PAM−1

+P⊥
AM−1

)
P̃am

= PAM−1
P̃am +P⊥

AM−1
am

(
aH
mP

⊥
AM−1

am

)−1

aH
mP

⊥
AM−1

= PAM−1
P̃am +

(
P⊥

AM−1
am

)((
P⊥

AM−1
am

)H (
P⊥

AM−1
am

))−1 (
P⊥

AM−1
am

)H
= PAM−1

P̃am +P(
P⊥

AM−1
am

) (42)

Hence, P(
P⊥

AM−1
am

) is orthogonal to the subspace defined by AM−1, the rest (underbraced in the

following expression) should reduce to PAM−1
,

PAM
= P̃AM−1

+ P̃am = P̃AM−1
+PAM−1

P̃am︸ ︷︷ ︸+P(
P⊥

AM−1
am

). (43)

One can verifies this:

P̃AM−1
+PAM−1

P̃am

= AM−1

(AH
M−1P

⊥
am

AM−1

)−1
AH

M−1P
⊥
am

+
(
AH

M−1AM−1

)−1
AH

M−1am

(
aH
mP

⊥
AM−1

am

)−1

︸ ︷︷ ︸
(35)

aH
mP

⊥
AM−1


= AM−1

((
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1P
⊥
am

+

︷ ︸︸ ︷(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1am

(
aH
mam

)−1
aH
mP

⊥
AM−1

)
= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1

(
P⊥

am
+PamP

⊥
AM−1

)
︸ ︷︷ ︸ (44)
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This last underbraced term can be written as

P⊥
am

+PamP
⊥
AM−1

= I−Pam +Pam

(
I−PAM−1

)
= I−PamPAM−1

= I−PAM−1
+PAM−1

−PamPAM−1

= P⊥
AM−1

+P⊥
am

PAM−1
(45)

which leads to

P̃AM−1
+PAM−1

P̃am

= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1

(
P⊥

am
+PamP

⊥
AM−1

)
= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1

(
P⊥

AM−1
+P⊥

am
PAM−1

)
= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1P
⊥
AM−1︸ ︷︷ ︸

=0

+AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1P
⊥
am

PAM−1

= AM−1

(
AH

M−1P
⊥
am

AM−1

)−1
AH

M−1P
⊥
am

AM−1

(
AH

M−1AM−1

)−1
AH

M−1

= AM−1

(
AH

M−1AM−1

)−1
AH

M−1 = PAM−1
(46)

Finally, one gets the desired orthogonal decomposition,

PAM
= PAM−1

+P(
P⊥

AM−1
am

) (47)
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