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Abstract

When a signal is strongly distorted by a reflecting surface, the surface can be seen as a filter whose impulse

response is convoluted with the incident signal. Depending on the application, it can be useful to estimate this

impulse response in order to either compensate or interpret it. When it comes to estimation, a performance

lower bound should be computed in order to better understand the performance limits of the observation

model at hand. Hence, a first contribution of this work is to provide an easy-to-use closed-form Cramér-Rao

bound for the proposed signal model. The validation process of this lower bound raises the problem of the

size, generally unknown, of the impulse response to be estimated. A second contribution of this study is

then to provide adapted theoretical and practical tools to determine the size of a given impulse response

along with its estimation.

Keywords: Time-delay and Doppler estimation; Cramér-Rao bound; maximum likelihood; band-limited

signals; impulse response estimation; FIR length; GNSS remote sensing.

1. Introduction

In wireless, satellite and radiocommunication systems, a signal often bounces over reflecting surfaces

before reaching a receiver. It can be on purpose as in remote sensing applications (radar, reflectometry,

lidar, etc.) or undesired as in digital communications systems in urban canyons [1]. This phenomenon also

occurs in acoustics where reverberation affects music and speech [2].5

Depending on the signal bandwidth and the reflecting surface features (roughness, reflectivity, etc.), the

reflected signal can be significantly distorted. In the case of remote sensing application, this distortion may

contain information regarding the reflecting surface but for digital communications systems, it usually lead

to performance deterioration, which has to be compensated for through channel equalization blocks. Either

way, there is a strong motivation to better understand the signal distortion.10
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Classically, the distorted signal can be modeled as the convolution between the non-distorted signal and

the impulse response of a reflecting surface or a propagation channel [3, 4]. From this point of view, the

reflecting surface, or the propagation channel, behaves as a filter whose parameters depends on its features.

As an example, the Global Navigation Satellite Systems (GNSS) signals are more and more exploited

as signals of opportunity to perform GNSS Reflectometry (GNSS-R). When the GNSS signal bounces from15

a reflected surface such as the sea surface, it is more or less distorted depending on the sea state. In

particular, the waves height changes the cross-correlation function from a nice and symmetrical triangle to

an asymmetric triangle with a long trailing edge [5].

In short, observing the impulse response of the sea state (in terms of size and energy distribution) would

allow users to i) evaluate the sea state based on the size of the reflecting surface, ii) classify different reflecting20

surfaces and, iii) using equalization techniques, better estimate the delay of the received signal which is part

of the altimetry product in GNSS-R. These applications can easily be transpose to propagation channel

estimation and equalization [6] and to radar, sonar or lidar.

In the process of estimating the impulse response along with the signal parameters (time-delay and

Doppler frequency), it is important to know the absolute limit, in the mean square error (MSE) sense, an25

estimator can reach. A typical tool to account for this absolute limit is the Cramér-Rao bound (CRB) which

provides the minimum achievable accuracy in terms of MSE of any unbiased estimator. The CRB for the

estimation of an attenuated, time delayed and distorted by a Doppler frequency has been widely studied for

wideband [7, 8] and narrowband [9, 10] band-limited signals. The dual source case, without any constraints

between the sources has also recently been covered [11] for narrowband band-limited signals. Constrained30

multi-sources CRB have already been derived for multilayer structures [12] and, more recently for the case of

an extended target [13, 14]. However, in this last reference, the authors resort to approximations to evaluate

the CRB. Thus, to the best of the authors’ knowledge, an easy-to-use, exact expression of the CRB for the

estimation of the impulse response of a signal cannot be found in the literature.

The signal model that results from the convolution between the impulse response and the incident signal35

can be seen as a conditional signal model (CSM) which has interesting properties in terms of convergence

of the MSE of the corresponding maximum likelihood estimator (MLE): indeed, in the asymptotic regime,

that is, when the number of samples is large [15] or when the signal-to-noise ratio is is large [16], the MLE

of a CSM is known to behave as an efficient estimator: it is unbiased and its MSE is equal to the CRB. Such

properties can help validate any CRB expression by comparing them to the estimated MSE of the MLE.40

The estimation of the size of the received impulse response can be regarded as a simplified case of the more

general estimation problem with an unknown number of sources. In the literature, many ways were developed

to tackle this signal detection problem. In high resolution arrays, the number of sources is estimated based

on the study of the eigenstructure of the observations covariance matrix with information-theoretic criterion

to minimize [17] such as the Akaike Information Criterion (AIC) [18] or the Minimum Descriptive Length45
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(MDL) [19, 20]. These criteria may be simplified considering the relevancy of the parameters to estimate

[21]. It can also be done by performing series of hypothesis tests with bootstrapping [22] or resorting to the

Benjamini-Hochberg procedure [23, 24]. Other studies propose a solution based on random matrix theory

[25] or subspace consideration [26, 27].

The aim of this contribution is then to start from an extended target signal model seen as a convolution50

between the transmitted signal and the impulse response of a target or reflecting surface. First, assuming

the size of the impulse response known, that is the number of pulses, a closed-form expression of the

CRB for the estimation of joint delay-Doppler and impulse response coefficients is derived and validated

based on the properties of the corresponding MLE. Then, the question of the unknown size of the impulse

response is addressed with a theoretical analysis of a misspecified number of pulses on the overall estimation55

performance. This discussion suggests two approaches to tackle the detection problem at hand and two

corresponding detection strategies are proposed to determine the number of pulses.

The rest of this paper is organized as follows: In Section 2, the signal model under study is presented.

The corresponding CRB is derived in Section 3 which is validated through numerical simulations in Section

3.3.3. Finally, a discussion regarding ways to determine the number of pulses of the impulse response, and60

its impact on the overall estimation performance, is drawn in Section 4. Section 5 concludes this study.

2. Signal Model

In this study, a transmitter ) is emitting a band-limited signal B(C) with bandwidth �, over a carrier

frequency 52. This band-limited signal can be expressed as follows,
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where sinc(·) is the sine cardinal function, 5 the frequency, �B ≥ � is the sampling frequency, # ′1, #
′
2 are in

Z with # ′1 < # ′2 and � refers to the time-frequency pair. The signal travels from ) to a reflecting surface

and then to the receiver '. An illustration of this scenario is presented in Figure 1.65

Let ( be the specular point of the reflecting surface, the transmitter ) and ( have motions assumed

linear and uniform during the duration of observations )� so that the positions can be described as p) /( (C) =

p) /(+v) /( ·C where p and v are the position and velocity vectors, respectively, and C is the time variable. With

this assumption, the distance between ) and ( is classically approximated by a first order distance-velocity

model [28],

‖p) ( (C)‖2 , ‖p( (C) − p) (C − g̃(C))‖2 = 2g̃ ≈ 3 + EC (2)

g̃(C) ≈ g( + 1C, g( =
3

2
, 1 =

E

2
, (3)
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Figure 1: Illustration of the problem

where 3 is the absolute distance between ) and ( at instant C = 0, E is the radial velocity between ) and (,

g is the time delay due to the propagation path, (1 − 1) is the dilatation induced by the Doppler effect and

2 is the speed of light in vacuum. From (3), the complex analytic signal at the point ( can be written as,

G( (C) = d(4 9 q̃( B ((1 − 1() (C − g()) 4 9l2 (1−1( ) (C−g( ) , (4)

where l2 = 2c 52, (( = [g( , 1(]) , d( and q̃(, the amplitude (strictly positive) and the phase of the complex

coefficient induced by propagation characteristics (fading, scintillation, etc). A simplification of the model

can be obtained with the narrowband hypothesis [28]. If one considers that the product � ·)� (where )� is also

called the coherent integration time for the considered observation model) is smaller than the inverse Doppler

term 2/E, then the Doppler effect on the baseband signal B(C) can be neglected: B((1 − 1) (C − g)) ≈ B(C − g)

([29, ch.9]). The complex analytic signal at the point ( is then written as (with q( = q̃( − l2 (1 + 1()g(),

G( (C) ≈ G(C)4 9l2 C =
(
d(4

9 q( B (C − g() 4− 9l21( (C−g( )
)
4 9l2 C . (5)

The reflecting surface is a complex object that distorts the signal G( (C), and that can be characterized

by its impulse response ℎ(C). The output of such a reflection, expressed at the specular point (, is the

convolution product (∗) between the input and ℎ(C),

H( (C) = ℎ(C) ∗ G( (C). (6)

Similarly to [13], the impulse response is modelled as a series of echoes regularly separated by a fixed time

interval which is the sampling period )B = 1/�B (which simply results from the Fourier Series of the surface

frequency transfer function). Consequently, the impulse response can be written as a sum of delayed and
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attenuated Dirac functions,

ℎ(C) =
%∑
?=1

d̃?4
9 q̃?X(C − (? − 1))B), (7)

where % is the number of consecutive echoes in the impulse response of the reflecting surface. The resulting

signal expressed at the receiver ' after the reflection is then written as follows,

H' (C) =
%∑
?=1

d̃?4
9 q̃?3 (C − (? − 1))B; (, d, q)4 9l2 (C−(?−1))B) (8)

=

(
%∑
?=1

d?4
9 q? B? (C; ()

)
4 9l2 C , (9)

with ( = [g, 1]) , g is the sum of the time delay due to the propagation from ) to ( and the one due

to the propagation from ( to ', 1 is the resulting Doppler stretch after the reflection, d? , dd̃? and

q? , q + q̃? − l2 (? − 1))B, d4 9 q being the complex amplitude associated to the transmission from ) to '

via a perfect specular reflection in (, and with g? = g + (? − 1))B yielding,

B? (C; () , B
(
C − g?

)
4− 9l21 (C−g?) . (10)

The baseband output of the receiver’s Hilbert filter with bandwidth �B containing the reflected signal is

then given by,

H(C) = H' (C)4− 9l2 C =
%∑
?=1

3? (C; (, d? , q?) + F(C), (11)

3? (C; (, d? , q?) , d?4 9 q? B? (C; (), (12)

where F(C) is a zero-mean additive complex Gaussian noise with variance f2
= . Now if one considers the

acquisition of # = #2 − #1 + 1 (#1 � # ′1, #2 � # ′2) samples at a sampling frequency �B, the resulting

discrete signal appears as a CSM,

y = A% (()" + w, w ∼ CN(0, f2
=I# ), (13)

with, for = ∈ [#1, #2] and ? ∈ [1, %],

y) = (. . . , H(=)B), . . .) , A% (() =
[
. . . , s? ((), . . .

]
, s? (()) =

(
. . . , B(=)B − g?)4− 9l21 (=)B−g?) , . . .

)
,

") ,
(
. . . , U? , . . .

)
=

(
. . . , d?4

9 q? , . . .
)
, w) = (. . . , F(=)B), . . .) .
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3. Compact CRB for the Joint Delay-Doppler Estimation with a Discrete Impulse Response

3.1. Evaluation of the Fisher Information Matrix

The purpose of this section is to present a new compact CRB for the estimation of the parameters

of the CSM (13). These parameters can be presented under the form of a vector &) , (f2
= , &̄

) ) with

&̄) , (() , UA1, U81, . . . , UA% , U8%) with, for ? ∈ [1, %], U? = UA? + 9U8?. From its expression in (13) and from the

assumption of a zero-mean complex Gaussian white noise, the distribution of the sampled received signal is

also Gaussian: y ∼ CN(A% (()", f2
=I# ) and one can apply the Slepian-Bangs formula [30] to evaluate the

Fisher Information Matrix (FIM), which is defined as the inverse of the CRB,

CRB& |& ,
(
F& |&

)−1
, (14)

and, [
F& |&

]
:,;
, �n: , n; |& =

2

f2
=

Re

{(
mA% (()"
mn:

)� (
mA% (()"

mn;

)}
+ #

f4
=

mf2
=

mn:

mf2
=

mn;
, (15)

where : and ; denotes the row and column index. The noise variance being independent from the other

parameters [31], the FIM is simply,

F& |& =


�f2

= |& 01,2%+2

02%+2,1 F&̄ |&

 , (16)

where �f2
= |& = #/f

4
= , which is a known result, and F&̄ |& is the FIM for the estimation of the delay-Doppler

along with the % echoes of the discrete impulse response. This FIM can be written as follows,

F&̄ |& (&) =
2�B

f2
=

Re
{
QWXQ�

}
, (17)

with Q defined in (A.2) and WX defined as,

WX ,


WX

1 WX�
2 WX�

3
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2 WX

2,2 WX�
4

WX
3 WX

4 WX
3,3


, (18)

where the different components are %×% hermitian matrices computed through the baseband signal samples,

for ? the row index and @ the column index in [1, %],

[
WX

1

]
?,@

=
1

�B
s�VΔ,0 (? − @)s,

[
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]
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1
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with s the baseband sample vector defined in (A.15), D in (A.19), VΔ,0 (·) in (A.17), VΔ,1 (·) in (A.20) and

VΔ,2 (·) in (A.22).

Proof. see Appendix A.1 �70

Remark that an equivalent expression can be found by considering the vector of unknown parameters

') , (f2
= , '̄

) ) and '̄
)
, (() , 1) , 5) ) where for ? ∈ [1, %], 1) = (. . . , d? , . . .) and 5) = (. . . , q? , . . .). The

only change in the computation is in the matrix Q but the FIM can be written as in (17) (see Appendix

A.2). For the rest of this work, the vector of unknown parameters may change from & to ' depending on

the need.75

3.2. Comparison with Existing Results

The obtained FIM can be compared to existing formulations for similar problems. First, if % = 1, then,

remarking that VΔ,0 (0) = I# ,

, X
1 =

1

�B
s� s, , X

2 =
1

�2
B

s�Ds, , X
3 = s�VΔ,1 (0)s,

, X
4 =

1

�B
s�DVΔ,1 (0)s, , X

2,2 = s�D2s, , X
3,3 = �Bs

�VΔ,2 (0)s, (20)

and the resulting FIM characterizes the estimation of the joint delay-Doppler and complex amplitude of a

signal, for instance, when no multipath is present. This has been studied in [7, 9] for the GNSS case.

Secondly, if % = 2, the resulting FIM represents a two-ray model such as the one studied in [11]. As

a reminder, in this previous work, the general expression of the dual source CRB was evaluated for the

estimation of following vector of unknowns /) = [f2
= , g1, 11, d1, q1, g2, 12, d2, q2], where there is no relation

between g1 and g2, or between 11 and 12. In that case one can evaluate the general expression of this dual

source CRB for a range Δg = g2 − g1, known as the path separation, and apply a reparameterization to

constrain the general CRB to the model used in the this contribution, that is,

g1 = g = g2 − Δg and 11 = 12 = 1. (21)

Note that when Δg = 1/�B, the resulting reparameterized FIM should match the FIM evaluated in (17)

when considering the vector of unknown parameters ' as mentioned at the end of Section 3.1. With the

relations in (21), the jacobian corresponding to this reparameterization is,

m/ (')
m')

=

[
e1 e2 + e6 e3 + e7 e4 e8 e5 e9

]
, (22)
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where e8 is the 9-element column unitary vector with zeros everywhere except at the 8-th index. Then,

FA' |' (') =
(
m/ (')
m')

))
F/ |/ (/)

m/ (')
m')

, (23)

where FA
' |' (') is the reparameterized FIM, from the CRB expression derived in [11] and the relations (21).

To visually validate the consistency between the reparameterized FIM (23) and the work presented in this80

contribution, a numerical application is proposed using a simple GNSS signal: the GPS L1 C/A signal [32].

This signal consists of a non-return-to-zero (NRZ) line code modulated by a Binary Phase Shift Keying

(BPSK) modulation. Its chip rate is 1.023 MHz. In the sequel, the C/A chip corresponds to the chip period

of the BPSK, that is about 1`s. Figure 2 presents the g term of the square root of the inverse of FA
' |' , when

Δg varies, for three values of �B. The three points at 1/8, 1/4 and 1/2 C/A chips correspond to the g term85

of the square root inverse of the FIM defined in (17). These points are located on their corresponding curves

which demonstrates that the CRB expressions derived in this contribution for % = 2 are consistent with the

existing expressions when applying the constraints defined in (21).

Figure 2: Evolution of the constrained CRB obtained after reparameterization of the general dual source CRB for �B = {2, 4, 8}
MHz as a function of the path separation Δg expressed in GPS L1 C/A chips. The three points are the evaluation of the CRB
derived in this contribution. This figure was obtained for a GPS L1 C/A signal with a noise level SNRout=33dB, amplitudes
1) = [1, 0.5] and phases 5) = [0, 0]. The vertical axis is multiplied by the speed of light to be converted to meters.

Finally, in order to connect this work to other existing CRB expressions as in [13], recall that in this

reference, the authors had to use a Taylor approximation to obtain tractable expressions. Here the expression90

proposed in (17) is easy to handle thanks to its matrix form and it does not rely on any assumption; it

only exploits the Shannon-Nyquist theorem on the representation of band-limited signals. The signal model
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presented in this reference is fundamentally different than the signal model (13): in fact, in [13], the authors

worked on a signal model that contains the carrier frequency where (13) assumes that the carrier frequency

is taken off at the demodulation step. This difference makes it difficult to connect the proposed expression95

to the results from the literature. As a final comment on the existing expression proposed in [13]: in the

numerical results, the authors compared the derived expression to the performance of two estimators, the

Oracle estimator that assumed all the amplitudes known and the Wideband Ambiguity Function (WBAF)

estimator that assumes a single source in the impulse response. The Oracle estimator, being helped by the

knowledge of the amplitudes could have its MSE smaller than the proposed CRB. The WBAF estimator,100

underestimating the number of sources and then being strongly misspecified, could have a MSE floored at a

given value because of a residual bias. None of these two estimators is asymptotically efficient for estimation

problem considered by the authors. They could not be used to ensure the expressions validity.

The question of the validation of the CRB expression proposed in this contribution is tackled in the next

section where it is compared to the MSE of the MLE that matches the signal model (13).105

3.3. Validation and Discussion

3.3.1. Methodology and Considered Scenarios

A way to ensure the validity of the CRB expression derived in Section 3 is to find an efficient estimator

for the signal model under study and to evaluate its MSE. Indeed, an efficient estimator is unbiased and

with a MSE equal to the CRB. Unfortunately, such an estimator cannot be found for the nonlinear problem110

under study, and one can only find an estimator with an asymptotic efficiency, for instance the conditional

MLE. It has been shown that in its asymptotic regimes, that is, when the SNR is large enough [16] or when

the number of samples is large enough [15], the MLE tends to behave as an efficient estimator. The purpose

of this section is first to present an implementation of the MLE, and then to apply it to two scenarios in

order to obtain an estimate of the MSE, and compare it to the corresponding CRB. In short, if the MLE115

MSE fits with the CRB, this implies that the derived expression is correct.

The two scenarios considered for this validation are presented in Figure 3a and Figure 3b under the

form of amplitude-delay-profiles, similarly to multipath power-delay-profiles that can be found in [33, Fig.

9.14]. Scenario #1 is a simple set of four consecutive decreasing echoes. Scenario #2 is also a set of four

consecutive echoes, but with the the second being of amplitude zero.120

3.3.2. Maximum Likelihood Estimator

The MLE is a common sense estimator, that is, it consists of selecting the parameters that are the most

likely with respect to the samples available. Knowing the probability density function of the signal (13),

?(y; &) = 1(
cf2

=

)# 4− 1

f2
=
‖y−A%" ‖2

, (24)
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(a) Scenario #1 (b) Scenario #2

Figure 3: Amplitude-delay-profiles of the scenarios considered. It consists of a set of four consecutive echoes with 1)1 =

[1, 3/4, 1/2, 1/3] for scenario #1 (a) and 1)2 = [1, 0, 1/2, 1/3] for scenario (b). For these scenario, the sampling frequency is set
to �B = 4 MHz.

maximizing (24) is equivalent to minimizing the norm in the exponential function, which can be split into

two orthogonal terms with the introduction of the projector over the space formed by the columns of the

matrix A%: PA% = A%
(
A�
%
A%

)−1
A�
%
, P⊥A% = I − PA% .

‖y −A%"‖2 =
PA% (y −A%")

2 +
P⊥A% (y −A%")2

=

A% ((
A�%A%

)−1
A�% y − "

)2

+
P⊥A%y2

. (25)

From the decomposition (25), the expression of the estimated vector &̂ is simplified; the estimation of the

delay-Doppler vector (̂ is decoupled from the estimation of the complex amplitudes,

(̂ = arg max
(

PA% (()y
2
, Û? =

[(
A�% ((̂)A% ((̂)

)−1
A�% ((̂)y

]
?

, (26)

ÛA? = Re{Û?}, Û8? = Im{Û?}, d̂? = |Û? |, q̂8? = arg{Û?}, (27)

f̂2
= =

1

#

P⊥A% ((̂)y2

. (28)

The projection (26) can be further developed to obtain an easy to implement formulation given in Appendix

B. For the rest of this contribution, the MLE of an impulse response, parameterized by the number of pulses

% and the regular interval between each pulse Δg?, will be denoted IR-MLE(%,Δg?). In this work, the

input of the estimator is the number of consecutive sources to estimate %, which is assumed to be known125

in this section, each sources being separated by )B as it is presented in the signal model (13), that is, the
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implemented estimator will be IR-MLE(%,)B).

3.3.3. Numerical Results

The following figures show the root CRB and the root MSE (RMSE) of the MLE for 1000 Monte Carlo

realizations, as a function of the SNR at the output of the matched filter. The deterministic parameters are

set as follows: g = 0, �3 = 1 52 = 200 Hz, " depends on the scenario under consideration (see Figure 3a and

3b for the amplitudes), the phase of the echoes, 5, is a set of four random phases. The SNRout is defined

with respect to (w.r.t.) the first echo d1,

SNRout ,
d2

1s
� s

f2
=

. (29)

For all the simulations, a GPS L1 C/A signal, coherently integrated for )� = 1ms at a sampling frequency

�B = 4 MHz was considered.130

Scenario #1. For this first scenario, the true values of the phases were randomly picked. The considered

values for the simulations were set to 5)1 = [334◦, 37◦, 114◦, 355◦]. Figure 4a and Figure 4b present the

RMSE for the estimation of the delay g and the Doppler frequency �3 of the IR-MLE(4,)B). In Figure

4a, one can observe the threshold region (where the RMSE reaches the square-root CRB) at SNRout = 27

dB. For the Doppler frequency, its RMSE is equal to the corresponding bounds for the range of SNRout135

considered here. Figure 4c presents the RMSE for the four echoes complex amplitudes estimations along

with their corresponding bounds. From this figure, one can first see that the RMSE satisfyingly follow the

square-root CRB, which validates the proposed CRB expressions.

Scenario #2. In this second scenario, the true values of the phases are 5)2 = [45◦,N/A, 184◦, 328◦], the

second phase being not applicable because the second amplitude is equal to 0. Figure 5a and Figure 5b140

correspond to the RMSE of the IR-MLE(4,)B) for the estimation of the delay and Doppler frequency. For

both parameters the RMSE does reach the square-root CRB, which, again, is in accordance with theory.

Figure 5c, presents the RMSE for the estimation of the four amplitudes. In this figure, one can see a good

fit of the RMSE on the corresponding CRB.

4. Determination of the Number of Pulses145

So far, the number of pulses that described the impulse response was assumed known. However this

number is often unknown and can vary in time. In this section, a theoretical analysis of the impact of

under- and overestimating the number of pulses is first proposed in Section 4.1. This study suggests two

different strategies to determine the number of pulses. Both strategies are then detailed with two proposed
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(a) g (b) �3

(c) "

Figure 4: Scenario #1: RMSE for the estimation of the parameters with IR-MLE(4,)B).

procedures in Section 4.2 and in Section 4.3. For each procedure, numerical examples are presented to150

support theoretical results.

4.1. Theoretical Analysis

Let ℎ(C) be a band-limited causal impulse response with a finite number of pulses %. This impulse

response can be written as,

ℎ(C) =
%∑
?=1

U?X (C − (? − 1))B) +
∞∑
@=1

U%+@X (C − (% + @ − 1))B) ,


U1 ≠ 0

U% ≠ 0

U%+@ = 0

, (30)
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(a) g (b) �3

(c) "

Figure 5: Scenario #2: RMSE for the estimation of the parameters with IR-MLE(4,)B).

and its corresponding transfer function,

� ( 5 ) =
%∑
?=1

U?4
− 92c 5 (?−1))B +

∞∑
@=1

U%+@4
− 92c 5 (%+@−1))B =

%∑
?=1

U?4
− 92c 5 (?−1))B , (31)

which is fully described with the samples ") = (U1, . . . , U%). One can then distinguish:

• the intermediate zero coefficients, U? = 0, 2 ≤ ? ≤ % − 1 which are part of the transfer function

definition,155

• the trailing zero coefficients, U%+@ = 0, 1 ≤ @ which are not part of the transfer function.

In order to better understand the impact of under- and over shooting, the global MSE of the impulse

13



response is considered.

MSE� , �

{
1

�B

∫ �B
2

− �B
2

���� ( 5 ) − �̂ ( 5 )���2 d 5 } = � {
1

�B

∫ ∞

−∞

���ℎ(C) − ℎ̂(C)���2 dC} (32)

Three cases can be thought of to evaluate (32).

• Undershooting case:

�̂ ( 5 ) =
%−Δ%∑
@=1

Û@4
− 92c 5 (@−1))B , 1 ≤ Δ% ≤ % − 1, (33)

In this case, it can be shown that

MSE� =

%−Δ%∑
?=1

�

{��U? − Û? ��2} + %∑
@=%−Δ%+1

��U@ ��2 , (34)

This is a case of misspecification which has been studied in [34, 35]. In misspecified cases, the MSE

does not tend to zero remains because of the second term of (34). Besides the estimates are also

affected and biased.160

• Overshooting case:

�̂ ( 5 ) =
%+Δ%∑
@=1

Û@4
− 92c 5 (@−1))B , 1 ≤ Δ%, (35)

Again, it can be shown that

MSE� =

%∑
?=1

�

{��U? − Û? ��2}︸                  ︷︷                  ︸
asymptotically: CA (CRB" |& )

+
%+Δ%∑
@=%+1

�

{��0 − Û@ ��2} , (36)

Here the case is correctly specified but the estimation of the trailing zero coefficients is detrimental for

two reasons

– the estimation of the trailing zero coefficients degrade the CRB for U?, 1 ≤ ? ≤ % because

increasing the number of unknown parameters increases the CRB [36].

– the estimation of the trailing zero coefficients increases the MSE� through the second term of165

(36).

However the MSE� converges to 0.

• Correct length case:

�̂ ( 5 ) =
%∑
@=1

Û@4
− 92c 5 (@−1))B , Δ% ≥ 1. (37)
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This case corresponds to the overshooting case (36) with Δ% = 0:

MSE� =

%∑
?=1

�

{��U? − Û? ��2}︸                  ︷︷                  ︸
asymptotically: CA (CRB" |& )

. (38)

Details on the previous results can be found in Appendix C

From this analysis, the best estimation strategy seems to be by overshooting rather than undershooting

since the MSE asymptotically reduces to 0. The ideal case being having the correct impulse response length,170

for which the MSE� has no additional term and the corresponding CRB is minimal.

For these reasons, test mechanisms could be thought of to either iteratively estimate the impulse response

with a growing number of pulses, that is by undershooting, or to estimate it with an excessive number of

pulses, or overshooting, and then evaluate the relevance of each one of the estimates, in order to see if they

carry information or if they are just noise.175

In the next two sections two families of procedures are presented to tackle the issue of an unknown

number of pulses. The first category is iterative: it assumes a number of estimated pulses and tests if there

is another pulse in the residue. The second proposed category is based on i) overshooting the number of

pulses, and ii) testing how likely each estimated pulse is to be part of the impulse response.

4.2. Iterative Procedure: % + next Test180

This first category of test assumes that % consecutive pulses have already been estimated. Then, the

procedure proposed hereafter tests if there is a signal in the residual noise that results from the difference

between the received signal and the estimated impulse response convoluted with a clean replica. In %+next,

the test controls the next candidate, that is, % + 1 whose time location is constrained at )B after the current

estimated impulse response. This test is then a simple evaluation of the likelihood that there is another

source at time ĝ + (% + 1))B, the test statistic )%+next considered is defined as

)%+next =

����(P⊥A% ((̂)y)� s%+1 ((̂)
����2 . (39)

Under the null hypothesis �0, there is no sources except the % sources already detected. Under the

alternative hypothesis �1, there is an extra source at % + 1. This test can be written as follows:

�0 : )%+next < threshold ℎ, (40)

�1 : )%+next > threshold ℎ. (41)

Consequently, under �0, the orthogonal projection of the data vector over the noise subspace, P⊥
A% ((̂)y, is
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simply noise. However, s%+1 ((̂) being a deterministic series of 1 and −1 of average 0 very close to the %

previous signals, the test statistic )%+next is a combination of complex Gaussian random variables that are

dependent. It results that this dependency reduces the variance of the orthogonal projection of s%+1 over the

space of the % previous pulses, defined by A%. This variance is decreased by a coefficient :f that depends on

the distance between each pulse (fixed by �B) and the number of pulses already estimated. See Appendix D

for more details to evaluate this coefficient. With :f evaluated, it is possible to normalize the test statistic

)%+next to obtain a j2
2 distribution,(

P⊥A% ((̂)y
)�

s%+1 ((̂)
�0−→

(
P⊥A% ((̂)n

)�
s%+1 ((̂) ∼ CN(0, #:ff2

= ) and
2

#:ff
2
=

)%+next ∼ j2
2 . (42)

From this, one can fix the probability of false alarm (PFA) and determine the corresponding threshold ℎ of

this test,

PFA = %

[
2

#:ff
2
=

)%+next > ℎ | �0

]
= 1 −

(
1 − 4−ℎ/2

)
⇔ ℎ = −2 log (PFA) . (43)

Based on the test definition in (40), if the test statistic is smaller than this threshold, the user will decide

that there is no signal at the next time location with a given PFA.

4.2.1. Wrap-up on the Iterative Procedure

The % + next procedure is summarized in the Algorithm 1:

Algorithm 1: % + next procedure.
// Initialization ()B and threshold must be defined before)

1 nSources ← 1;
2 test_interrupt ← false;
// Loop

3 while test_interrupt is false do
4 estimate &̂ (nSources) with IR-MLE(nSources, )B) applied to the data;
5 compute )%+next;
6 if )%+next > threshold then

// �1: there is another source
7 nSources ← nSources + 1;
8 else

// �0: there is no more sources
9 test_interrupt ← true;

10 end
11 end
12 return nSources, &̂ (nSources)

This first test is quite simple, however, it has a few limitations: i) it focuses on one single time location,185

that is, if there is no energy at the next three time locations but there is one at the fourth (this is the case

of intermediate zero coefficients mentioned in Section 4.1), the user might not be able to see it, ii) if the
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threshold is reached, there is a possibility that the detected item is actually further, and iii) even if the

test itself is simple, the overall procedure results quite time consuming because one has to re-evaluate the

IR-MLE, that is, line 4 of Algorithm 1, with an increasing number of sources, which can be quite large.190

4.2.2. Numerical Illustrations

In order to illustrate the % + next test described by the Algorithm 1, simulations are performed to

evaluate, for a given PFA, the probability of detection (PD) of the correct number of sources for three SNR

scenarios. The results presented in Table 1 were obtained for PFA set to 0.01 and for the scenario #1

described in 3a. 2000 runs were performed to estimate the PD defined as the percentage of runs for which195

the correct number of sources (4) was determined. For these good estimates, the corresponding RMSE for

each unknown parameter was computed and compared with the root CRB.

Table 1: Numerical results for the % + next procedure with PFA = 0.01 applied to scenario #1.

SNR [dB] PD RMSEg [s]
√
CRBg [s] RMSE�3 [Hz]

√
CRB�3 [Hz] MSE�

√
CRB�

20 0.08 9.86 15.55 26.43 24.85 0.46 0.61
23 0.46 9.71 11.01 17.55 17.60 0.38 0.43
26 0.93 8.34 7.79 12.81 12.46 0.32 0.30

The range of SNR considered corresponds to the transitional area in Figure 4a where the RMSE gets

closer to the root CRB. The results presented in Table 1 show that for low SNR, the PD is poor due to the

noise. In this case, by computing the RMSE with the few good candidates for which the number of sources200

was correctly determined, this RMSE term can be below the lower bound predicted by the CRB. This is

not very surprising since only a selected subset of the estimates is used whereas the CRB is computed for

all possible estimates. For larger SNR, the RMSE is closer to the one obtain in simulation in Section 3.3.3,

Figure 4a. To obtain the actual lower bound of the detection and estimation procedure, one would need to

compute the CRB conditioned by the detection test, which is far beyond the scope of this paper. For higher205

SNR, the PD gets closer to 1 and all the computed RMSE tend to the corresponding CRB.

4.3. Overshoot-and-Decimate Procedures

As mentioned in the previous section, iterative approaches to determine the number of sources are known

to be time consuming: the user would potentially need to run consecutive and increasingly complex estima-

tors until reaching a satisfying number of pulses. An alternative approach is to deliberately overestimate210

the number of sources and try to differentiate the estimated pulses to see whether they are actual pulses

or simply trailing zero coefficients. The idea is to fix a maximum number of pulses " and to apply a IR-

MLE(",)B) for " pulses. Suppose now that there are only  actual pulses among the " estimated ones,

it was shown in Section 4.1 and [37] that asymptotically, the  true values are among the " estimates.

Consequently, one only needs to test each of the " pulses and discard the least relevant with an appropriate215

criterion.
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4.3.1. Overshooting Example

First, the aim is to highlight the presence of the true values in the output of the overshooting IR-

MLE(",)B). Figure 6 presents the output of the IR-MLE(",)B) looking for " = 6 pulses for the two

scenarios presented in Figure 3a and 3b where  = 4. These figures were obtained by running 1000 Monte220

Carlo simulations and estimating systematically 6 pulses, the SNRout as defined in (29) was set to 39dB.

The estimated amplitudes located at their estimated delay are plotted. In these figures, one can see that

for any scenario, the estimator spots the true pulses among a number of lower amplitude estimates. It then

sounds reasonable to think that an adequate test on the estimated vector would filter out the non-relevant

estimates.225

(a) Scenario #1 (b) Scenario #2

Figure 6: Output of the misspecified IR-MLE(",)B) (" = 6,  = 4) : (a) Scenario #1, (b) Scenario #2.

4.3.2. Chung and Mecklenbräuker Test

In order to test the relevance of each estimate with the resulting vector of estimated parameters: Ẑ)
"
=(

ĝ, �̂3 , 1̂
)
" , 5̂

)

"

)
, one may consider the following hypothesis to be tested, as done in [37],

• �<: the <-th pulse is null: d< = 0→ y =
∑"
?=1, ?≠< d?4

9 q? s? + n

• �<: the <-th pulse is not null: d< ≠ 0→ y =
∑"
?=1 d?4

9 q? s? + n230

Consequently, one can think of a likelihood ratio (LR) that would compare both hypothesis,

LR< =

P⊥A"y
2P⊥A"−1,<y2

, (44)
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where A"−1,< = A"−1,< ((̂) denotes the matrix A" = A" ((̂) without the <-th column. This test statistic

is then compared to a threshold to decide whether the <-th source should be discarded:

�< : LR< < threshold ℎ, (45)

�< : LR< > threshold ℎ. (46)

It can be shown that, under the null hypothesis �<, LR< has a V distribution with shape parameters 1 and

# − 1. See Appendix E for more details on the distribution derivation.

Consequently, from the cumulative distribution function of a V distribution, one can link the threshold

ℎ to a given PFA,

PFA = %[LR< > ℎ | LR< ∼ V1,#−1] = 1 − �ℎ (1, # − 1)
�(1, # − 1) = (1 − ℎ)

#−1 ⇔ ℎ = 1 − PFA 1
#−1 (47)

where � is the beta function and �ℎ is the incomplete beta function.

4.3.3. Variant: Sorted Amplitudes Decimation

An intuitive extension of the Chung and Mecklenbräuker test is to order the vector of estimated pulses235

according to their corresponding amplitudes 1̃, where 1̃1 < 1̃2 < . . . < 1̃" . The idea is then to test each

consecutive pulse from the weakest to the strongest. If the <-th is tested and tagged non-relevant, it is then

removed from the vector of amplitudes 1̃. Consequently, as long as the pulses are removed, it is always the

first element of the vector whose relevance is tested and the size of the projector PA is reduced. The test

stops whenever there is a pulse that is considered relevant because this one is strong enough to be an actual240

pulse. Because the test is going from the weakest to the strongest pulse, this implies that the remaining

ones will be relevant as well. This might be interesting to limit the number of tests done.

4.3.4. Wrap-up on the Overshoot-and-Decimate Procedure

The overshoot-and-decimate procedure as described in Section 4.3.2, is summarized in the Algorithm 2:

4.3.5. Numerical Illustrations245

Similarly to the iterative procedure, in order to illustrate the overshoot-and-decimate procedure described

in Algorithm 2, simulations are performed and the PD is evaluated for a given PFA and three SNR scenarios.

The obtained results are presented in Table 2. To obtain them, the initial number of sources was set to

" = 6, PFA was set to 0.01 and scenario #1 was considered. 2000 runs were performed to evaluate the

PD. Following the Algorithm 2 structure, in the case of a correct detection of the number of pulses, the250

corresponding RMSE for each unknown parameters along with the root CRB are also recorded.
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Algorithm 2: Overshoot-and-Decimate procedure.
// Initialization ()B, threshold and " must be defined before)

1 estimate &̂ (" ) with IR-MLE(", )B) applied to the data;
2 relevant_indexes ← [ ];
// Loop to check the sources relevance

3 for < in 1 : " do
4 compute LR<;
5 if LR< > threshold then

// �<: source m is relevant
6 relevant_indexes ← [relevant_indexes, m];
7 else

// �<: source m is not relevant, do nothing
8 end
9 end
// Last run of IR-MLE to obtain the optimal solution

10 nSources ← relevant_indexes[end] - relevant_indexes[1];
11 estimate &̂ (nSources) with IR-MLE(nSources, )B) applied to the data;
12 return nSources, &̂ (nSources)

Table 2: Numerical results for the overshoot-and-decimate procedure with PFA = 0.01 applied to scenario #1.

SNR [dB] PD RMSEg [s]
√
CRBg [s] RMSE�3 [Hz]

√
CRB�3 [Hz] MSE�

√
CRB�

20 0.29 17.32 15.55 25.11 24.85 0.65 0.61
23 0.57 12.77 11.01 17.36 18.24 0.50 0.43
26 0.76 9.04 7.79 12.64 12.42 0.37 0.30

The overshoot-and-decimate procedure presents a poor PD for low SNR. As expected, it gets better as

the SNR gets larger. For low SNR, the performance of this procedure is slightly better than the % + next

procedure performance presented in Table 1 and the computed RMSE are close the MLE RMSE displayed

in Figure 4.255

5. Conclusion

In this study, the distortion of a band-limited signal due to an extended target or a reflecting surface has

been modeled as a convolution between the incident signal and the impulse response of the reflecting surface.

This model applies to radar, sonar and series of remote sensing scenarios. It was then shown that the received

signal at the output of the Hilbert filter could be seen as a conditional signal model. A closed-form of the260

Cramér-Rao bound was then derived. This expression is easy-to-use because it is a function of the signal

baseband samples. This CRB expression has been validated by comparing it to existing expressions, and to

the corresponding maximum likelihood estimator mean square error. All the previous steps have been done

assuming a known number of pulses that describe the impulse response. The question of determining this

number of pulses was then addressed with first a theoretical analysis of the impact of a misspecified number265
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of pulses on the global impulse response MSE, and second, proposing two detection strategies adapted to the

signal model under study, these strategies were illustrated with simulations to present their performance for

different SNR levels. Once the number and position of pulses is correctly determined, a properly specified

maximum likelihood estimator can be build in order to obtain the best estimate of the impulse response.
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Appendix A. Details of the Derivation of the Fisher Information Matrix

Appendix A.1. Real and Imaginary Parts Parameterization

This section provides details on the derivation of FIM (17). From the signal model (8), the derivative of

the signal w.r.t. the vector of unknown parameters excluding the noise variance &̄) = (() , UA1, U81, . . . , UA% , U8%)

can be expressed in a matrix form,

m

m&̄

(
%∑
?=1

3? (C; (, d? , q?)
)
= Q(&̄)D(C; g)e(C; (), (A.1)

where, with ? ∈ [1, %],

Q(&̄) =



9l21"
) 01,% −")

01,% − 9l2") 01,%

O% ⊗
©«

1

9

ª®¬ 02%,% 02%,%


, e(C; () =


	% (C; () 0%,% 0%,%

0%,% 	% (C; () 0%,%

0%,% 0%,% 	% (C; ()


, (A.2)

D(C; g) =



...

B(C − g?)
...

...

(C − g?)B(C − g?)
...

...

B (1) (C − g?)
...



, 	% (C; () =


. . . 0 0

0 4− 9l21 (C−g?) 0

0 0
. . .


. (A.3)

where ⊗ denotes the Kronecker product.
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Therefore the derivative of the vector (A%")) (C = =)B, with samples #1 ≤ = ≤ #2) w.r.t. &̄ is275

m (A%"))

m&̄
=

[
. . . m

m&̄

(∑%
?=1 3? (=)B; (, d? , q?)

)
. . .

]
=

[
. . . Q(&̄)D(=)B; &̄)e(=)B; &̄) . . .

]
= Q(&̄)

[
. . . D(=)B; &̄)e(=)B; &̄) . . .

]
. (A.4)

Then, remembering the following properties,

m (A%")�

m&̄)
=

(
m (A%"))

m&̄

)∗
,
m (A%")
m&̄)

=

(
m (A%"))

m&̄

))
, (A.5)

one can write that

m (A%")�

m&̄)
m (A%")
m&̄)

=

(
Q(&̄)

(
#2∑
==#1

D(=)B; &̄)D(=)B; &̄)�
)
Q(&̄)�

)∗
. (A.6)

If one evaluates the limit when #1 and #2 tend to infinity:

lim
(#1 ,#2)→(−∞,+∞)

)B

#2∑
==#1

D(=)B; &̄)D(=)B; &̄)� =

+∞∫
−∞

D(C; &̄)D(C; &̄)�dC =


WX

1 WX�
2 WX�

3

WX
2 WX

2,2 WX�
4

WX
3 WX

4 WX
3,3


, (A.7)

where, for ? and @ in [1, %]

[
WX

1

]
?,@

=

∫
R
B(C − g?)B(C − g@)∗dC (A.8)[

WX
2

]
?,@

=

∫
R
(C − g?)B(C − g?)B(C − g@)∗dC (A.9)[

WX
3

]
?,@

=

∫
R
B
(1)
? (C − g?)B(C − g@)∗dC (A.10)[

WX
4

]
?,@

=

∫
R
(C − g@)B (1) (C − g?)B(C − g@)∗dC (A.11)[

WX
2,2

]
?,@

=

∫
R
(C − g?) (C − g@)B(C − g?)B(C − g@)dC (A.12)[

WX
3,3

]
?,@

=

∫
R
B (1) (C − g?)B (1) (C − g@)dC (A.13)

As an example, the details of the derivation of the first term (A.8) can be found as follows, the derivation

is based on the properties of the Fourier transform over the hermitian product.280
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[
WX

1

]
?,@

=

∫
R
B(C − g?)B(C − g@)∗dC

=

∫
R
B(D − (? − @))B)B(D)∗dD

=

∫ �B
2

− �B
2

(( 5 )4− 92c 5 (?−@))B(( 5 )∗d 5

and, if one sees the sum definition of the Fourier transform (1) as a matrices product,

[
WX

1

]
?,@

=
1

�B

∫ 1
2

− 1
2

(
s) .( 5 )∗

)
4− 92c 5 (?−@)

(
s� .( 5 )

)
d 5

=
1

�B
s�VΔ,0 (? − @)s (A.14)

with

s =
(
. . . B(=)B) . . .

))
#1≤=≤#2

(A.15)

.( 5 ) =
(
. . . 4 92c 5 = . . .

))
#1≤=≤#2

(A.16)

VΔ,0 (=) =
∫ 1

2

− 1
2

.( 5 ).� ( 5 )4− 92c 5 =d 5 (A.17)

[
VΔ,0 (=)

]
:,;
=

∫ 1
2

− 1
2

4 92c 5 (:−;−=)d 5 = sinc(: − ; − =) =


1 : − ; = =,

0 else
(A.18)

The other WX terms are similarly derived, the details of these derivations can be found in [38, Sec. 1].

Series of additional variables are used to obtain the results presented in (19), they can be found below.

D =

(
. . . = . . .

))
#1≤=≤#2

(A.19)

VΔ,1 (=) = 92c
∫ 1

2

− 1
2

5 .( 5 ).� ( 5 )4− 92c 5 =d 5 (A.20)

[
VΔ,1 (=)

]
:,;
= 92c

∫ 1
2

− 1
2

5 4 92c 5 (:−;−=)d 5 =


0 : − ; = =,

(−1) |:−;−= |/(: − ; − =) else
(A.21)

VΔ,2 (=) = 4c2

∫ 1
2

− 1
2

5 2.( 5 ).� ( 5 )4− 92c 5 =d 5 (A.22)
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[
VΔ,2

(
Δg

)B

)]
:,;

= 4c2

∫ 1
2

− 1
2

5 24 92c 5 (:−;−=)d 5 =

c2/3 : − ; = =,

(−1) |:−;−= |2/(: − ; − =)2 else
(A.23)

Appendix A.2. Amplitude and Phase Parameterization

In order to obtain the expression of the FIM for the vector of parameters '̄
)
= (() , 1) , 5) ), the only

difference is in the derivative of the signal w.r.t. '̄ . Again, this derivative can be expressed in a matrix form,

m

m '̄

(
%∑
?=1

3? (C; (, d? , q?)
)
= Q( '̄)D(C; g)e(C; (), (A.24)

where, with ? ∈ [1, %],

Q( '̄) =



9l21"
) 01,% −")

01,% − 9l2") 01,%

�% 0%,% 0%,%

diag( 91)�% 0%,% 0%,%


,�% =


. . . 0 0

0 4 9 q? 0

0 0
. . .


, (A.25)

with e(C; () defined in (A.2), D(C; g) defined in (A.3) and diag( 91) the square diagonal matrix with its285

diagonal equal to 91.

Appendix B. Note on the Implementation of the Maximum Likelihood Estimator

This appendix further develops the projector term to be maximized to obtain the estimated vector (̂. If

one considers the expression of the projection in (26):

PA%y
2
= y�PA%y =

(
A�% y

)� (
A�%A%

)−1
A�% y (B.1)

For a given sampling frequency �B, the inverse term in (B.1) depends only on %, the number of sources

considered in the estimation:

A�%A% =


s�1
...

s�
%


[s1, . . . , s%] . (B.2)

It can then be pre-computed and stored in memory without need of re-evaluating it.
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The term A�
%
y in (B.1) is the one that directly depends on the parameters to be estimated.

A�% y =


s�1
...

s�
%


y (B.3)

Therefore, [
A�% y

]
?
= s�? y =

#2∑
==#1

B(=)B − g?)∗H(=)B)4 9l21 (=)B−g?) (B.4)

Consequently,

lim
(#1 ,#2)→(−∞,+∞)

[
A�% y

]
?
= �B

∫
R
B(C − g?)∗H(C)4 9l21 (C−g?)dC = 'H,B (g? , 1), (B.5)

where 'H,B (g, 1) is the ambiguity function between the received signal and the clean replica B, this function

is easily computed for a range of delay g and Doppler stretch 1 with Fourier transforms. The product (B.3)

can then be written as follows:

lim
(#1 ,#2)→(−∞,+∞)

A�% y =


�B'H,B (g, 1)

...

�B'H,B (g + (% − 1))B , 1)


(B.6)

which is a vector easy to construct since each element is a shifted replica of the precedent one. With these

considerations, the search of the maximum of a %-source criterion reduces to a traditional search over a290

delay-Doppler grid.

Appendix C. Details on the MSEN for Under- and Overshooting Cases

First recall that ∫ �B
2

− �B
2

4− 92c 5 ?)B
(
4− 92c 5 @)B

)∗
d 5 = X@?�B . (C.1)

For the undershooting case:

∫ �B
2

− �B
2

���� ( 5 ) − �̂ ( 5 )���2 d 5 = ∫ �B
2

− �B
2

����� %∑
?=1

U?4
− 92c 5 (?−1))B −

%−Δ%∑
@=1

Û@4
− 92c 5 (@−1))B

�����2 d 5 (C.2)

=

∫ �B
2

− �B
2

������%−Δ%∑
?=1

(
U? − Û?

)
4− 92c 5 (?−1))B +

%∑
@=%−Δ%+1

U@4
− 92c 5 (@−1))B

������
2

d 5 (C.3)

=

%−Δ%∑
?=1

��U? − Û? ��2 + %∑
@=%−Δ%+1

��U@ ��2 using (C.1), (C.4)
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which leads to (34).

Now regarding the overshooting case,

∫ �B
2

− �B
2

���� ( 5 ) − �̂ ( 5 )���2 d 5 = ∫ �B
2

− �B
2

����� %∑
?=1

U?4
− 92c 5 (?−1))B −

%+Δ%∑
@=1

Û@4
− 92c 5 (@−1))B

�����2 d 5 (C.5)

=

∫ �B
2

− �B
2

����� %∑
?=1

(
U? − Û?

)
4− 92c 5 (?−1))B −

%+Δ%∑
@=%+1

Û@4
− 92c 5 (@−1))B

�����2 d 5 (C.6)

=

%∑
?=1

��U? − Û? ��2 + %+Δ%∑
@=%+1

��0 − Û@ ��2 , (C.7)

which leads to (36).

Appendix D. V + next Correlation Coefficient295

Let one consider a study case: GPS L1 C/A. The auto-correlation function is known and can be modelled

by a zero-centered triangle. One can then assume that the normalized cross-correlation between s% and s%+1

is simply: s�
%
s%+? = 1 − ?�0/�B where �0 is the GPS L1 C/A chip rate, equal to 1.023 MHz. Then, if one

considers the case with % = 2 sources already detected and no other remaining source (�0):

PA2
s3 = A2

(
A�2 A2

)−1
A�2 s3 =

[
s1 s2

] 
s�1 s1 s�1 s2

s�2 s1 s�2 s2


−1 

s�1 s3

s�2 s3

 (D.1)

Then with the approximated triangular shape and assuming that �B/�0 � 1, one can get

P⊥A2
s3 ≈ s3 −

(
1 − �0

�B

)
s2 +

�0

2�B
s1. (D.2)

And for �B large enough, this is no longer a series of +1 and −1 because of the cross-correlation between

close-in-time signals. Figure D.7 shows an example for �B = 8�0: the variance of s3 is 1 but the variance

of its orthogonal projection is now 0.2336. There is then a given correlation coefficient :f that depends on

�B, the pseudo-random noise code, the number of signals and the distance between the consecutive pulses

considered. This coefficient directly determines the distribution under �0 and is needed to set the threshold300

for a given probability of false alarm. However it is difficult to anticipate :f, as it can be seen in the

following table D.3. Consequently, :f needs to be evaluated during the detection test.

Table D.3: Exemples of :f for GPS L1 C/A with % = 2.

�B/�0 2 4 8 12
:f 0.6673 0.4290 0.2336 0.1596
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Figure D.7: Projection of s%+1 on the space spanned by the columns of A% , % = 2, �B = 8�0.

Appendix E. Chung and Mecklenbräuker Likelihood Ratio Distribution Derivation

The orthogonal projector over the space defined by the column of A" can be separated into two orthog-

onal projectors. One over the subspace defined by " − 1 columns (omitting the <-th component) and the

other, which is naturally the projection upon the subspace defined by the <-th column, orthogonalized:

PA" = PA"−1,< + P(
P⊥A"−1,<

s<

) (E.1)

Proof. See [38, Sec. 2] for more details. �

Consequently, the likelihood ratio defined in (44) can be reorganized using the orthogonal decomposition

(E.1):

LR< =

P⊥A"y
2P⊥A"−1,<y2

=

P⊥A"−1,<y2

−
P(

P⊥A"−1,<
s<

)y2

P⊥A"−1,<y2
= 1 −

���s�<P⊥A"−1,<y���2P⊥A"−1,<s<2 P⊥A"−1,<y2
(E.2)

Under the �< hypothesis, the <-th component is not relevant. In that case the numerator
���s�<P⊥A"−1,<y���2

has the same probability density function as in (42), the first norm of the denominator
P⊥A"−1,<s<2

is an
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attenuated version of the vector s< as detailed in Appendix D and the last norm is the norm of the residual

noise. In short:

LR<
�<−→ 1 −

∼j2
2 (0,# :ff2

=/2)︷            ︸︸            ︷���s�<P⊥A"−1,<y���2P⊥A"−1,<s<2︸            ︷︷            ︸
=# :f

P⊥A"−1,<y2︸          ︷︷          ︸
∼j2

2#
(0,f2

=/2)

(E.3)

Now, considering the fractional component of this expression:

LR< ∼
j2

2

j2
2#

=
j2

2

j2
2 + j2

2(#−1)
= V1,#−1 (E.4)

which has a known probability density function and which allows to compute a desired probability of false305

alarm.
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