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Abstract

The study of ground reflections of Global Navigation Satellite System (GNSS) signals, as in GNSS Reflec-

tometry (GNSS-R) can lead to the receiver height estimation. The latter is estimated by comparing the time

of arrival difference between the direct and reflected signals, also called path separation. In ground-based

scenarios, this path separation can be very small, inducing important interference between paths, which

makes it difficult to correctly obtain altimetry products. The path separation estimation can be obtained

by a brute force dual source maximum likelihood estimator (2S-MLE), but this solution has a large compu-

tational cost. On the other hand, the path separation is so small that a number of approximations can be

done. In this study, a third order Taylor approximation of the dual source likelihood criterion is proposed to

reduce its complexity. The proposed algorithm performance is compared to the non approximated 2S-MLE

for the estimation of the path separation, and to a standard single source processing for the estimation

of the direct signal time-delay. These results, along with the corresponding lower bounds, prove that the

proposed approach may be of interest for two applications: ground-based GNSS-R altimetry (or radar with

low elevation targets) and GNSS multipath mitigation.

Keywords: maximum likelihood estimator, joint delay-Doppler estimation, GNSS-R, multipath.

1. Introduction

For almost thirty years, Global Navigation Satellite System (GNSS) signals have been considered not

only as a mean to obtain position, velocity and time on Earth, but also as signals of opportunity for scores

of applications. For instance, GNSS Reflectometry (GNSS-R) focuses on the reflection of these signals

upon the Earth to extract features such as, for the case of ground-based GNSS-R, soil moisture [1], snow5

depth [2], sea and river heights [3, 4]. The standard model for such applications is to assume a single

multipath reflexion on the ground i.e., a specular reflection [5]. Depending on the receiver altitude, the
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nature of the reflected signal significantly varies. For spaceborne and airborne scenarios, the reflected signal

is strongly distorted by the reflecting surface and the atmosphere. On the other hand, for ground-based

scenarios, the path separation between the line-of-sight (LOS) and reflected signals is so short that a potential10

interference between them often happens. Classical GNSS-R techniques that assume direct and reflected

paths enough separated do not work in this case. A common approach to study this interference, so-called

GNSS Interferometric Reflectometry (GNSS-IR), estimates the fringes of signal-to-noise ratio (SNR) due to

the successive constructive and destructive recombinations of the LOS and reflected paths, as the satellite

elevation varies [5]. Such a technique uses a single antenna but requires long integration times (some tens15

of minutes). However, it is less common to try to estimate the parameters of the combined signals in

order to extract the path separation from the estimated delays. This is of great interest since it would

imply to obtain a GNSS-R product, e.g., the height between receiver and reflecting surface, every tens of

milliseconds instead of every few minutes, as it is the case for GNSS-IR. Then the goal of this paper is to

provide an alternative to the standard GNSS-IR technique to increase the measurement rate. The challenge20

is then to estimate the delays of two very closely spaced sources without requiring to interfering techniques.

This problem has already been studied for the estimation of the direction of arrival of two closely spaced

sources [6, 7]. Based on approximations of the corresponding dual source maximum likelihood estimator

(2S-MLE), the complexity of the search is reduced, and in some areas the performance is better than the

2S-MLE’s. Other high-resolution time-delay estimation approaches, based on time-delay sparsity [8] and25

deconvolution [9] of the matched filtered data were also proposed in complex multipath scenarios. Array

processing techniques [10, 11] could improve sources separation, but require a hardware complexity increase.

Since low-cost applications are targeted, such techniques are not considered in this paper. Finally, the

approach proposed in the following focuses on the GNSS-R scenario where only one multipath reflection

is considered, it would be interesting to extend it to a larger number of reflections to adapt it to urban30

navigation applications but this out of the scope of this contribution.

In this communication, an approximation of the 2S-MLE is considered based on a 3rd order Taylor ex-

pansion. Such an approximation allows a dimension reduction of the likelihood criterion for the estimation

of the time-delays of two closely spaced sources. Based on the shape of the 3rd order approximation, an ap-

proximate maximum likelihood estimator (AMLE) is proposed, tested through simulations, and compared to35

both the 2S-MLE, the corresponding Cramér-Rao bound (CRB) and to a standard single source processing.

2. Signal Model

In this study, a receiver with a single antenna able to collect both a direct signal (indexed 0) and its

reflection (indexed 1) is considered. The receiver is assumed close to the ground and the reflection, caused

by a smooth surface such as a lake is assumed specular [4]. Refer to Fig. B.1 for an illustration of the40
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geometry.

2.1. Narrowband Signal Model

Under the ground-based assumptions just mentioned and considering a narrowband band-limited signal

sampled at a sampling rate )B = 1/�B where �B, the sampling frequency, is set equal to the RF front-end

bandwidth, the received discrete baseband signal is classically identified to a dual source conditional signal

model (CSM) [12]:

x = A((0, (1)" + w, w ∼ CN(0, f2
=I# ) , (1)

with, for 8 ∈ {0, 1}, ()
8
= (g8 , 18) where g8 is the unknown time-delay and 18 accounts for the unknown

Doppler stretch and, for, = ∈ [0, # − 1], x) = (. . . , G(=)B), . . . ), A((0, (1) = [a0, a1].

a)
8
=

(
. . . , B(=)B − g8)4− 9l218 (=)B−g8) . . .

)
is the time-delayed and frequency-shifted replica of the transmit-45

ted signal B(=)B). w) = (. . . , F(=)B), . . . ) is the noise and ") =
(
d04

9 q0 , d14
9 q1

)
gathers the complex

amplitudes of each path.

2.2. Close-to-Ground Assumptions

The receiver ' being close to the ground (tens of meters above the reflecting surface), the relative path

difference Δg = g1−g0 is of the same order. Based on the link between height and path separation: ℎ = 2Δg
2 sin(4)50

[13], the variation of the path separation with the transmitting satellite can be found in Fig. B.2 for the

case ℎ = 25m. From Fig. B.2, it is clear that both direct and reflected paths are very close in time. For

most of the GNSS signals, even the recent GPS L5 and GALILEO E5A or E5B, a strong interference will

exist. This contribution focuses on GPS L1 C/A signals but can be extended to the L5 band.

On the other hand, given the geometry and the motionless nature of the reflecting surface, the Doppler

frequencies of both direct and reflected signals do not differ more than a fraction of Hertz. It can be shown

that in a static geometry, the Doppler frequency difference between the direct signal and its reflection is only

due to the receiver height and the elevation of the satellite. Indeed, for very low altitude scenarios, the phase

difference between direct and reflected paths can be expressed as follows [14]: Δq = q1 − q0 = 2l2ℎ
2

sin(4).

Then, as the satellite elevation 4 varies, the relative phase varies and the first derivative corresponds to the

relative Doppler frequency: Δ�3 = (11 − 10) 52 = 2 52ℎ
2

cos(4) d4dC . This expression is often used for altimetry

based on the SNR observations [1, 5] in GNSS-IR. A worst-case numerical application yields, for GPS L1

satellites with elevation rate d4/dC = 0.14 mrad/s, 4 = 0 rad, 52 = 1575.42 MHz and a receiver at altitude

ℎ = 25 m: Δ�3 ≈ 0.04 Hz. Such a small difference will not be observable for the coherent integration

time considered in this study. In short, two main assumptions are made due to the considered low altitude

geometry of the receiver: i) the Doppler frequencies of the direct and reflected paths are considered equal:

10 = 11 = 1, and ii) the reflected path delay is very close to the direct delay g1 = g0 + Δg, Δg small.
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Consequently, (0 = [g0, 1]) and (1 = [g0 + Δg, 1]) , and the final dual source CSM is given by:

x = A(g0,Δg, 1)" + w, w ∼ CN(0, f2
=I# ) , (2)

with, for = ∈ [#1, #2], A(g0,Δg, 1) = [a0, a1], a0 previously defined in the dual source CSM, and a)1 =55 (
. . . , B(=)B − g0 − Δg)4− 9l21 (=)B−g0−Δg) , . . .

)
.

3. Approximate Maximum Likelihood Estimator

3.1. Dual Source Maximum Likelihood Estimator

Given the dual source CSM (2), the 2S-MLE of / , (g0,Δg, 1, d0, q0, d1, q1)) is given by [15, 16]:(
ĝ0, Δ̂g, 1̂

)
= arg max

g0 ,Δg,1
‖PAx‖2 , (3)

and, for (g0,Δg, 1) =
(
ĝ0, Δ̂g, 1̂

)
and 8 ∈ {0, 1}, d̂8 =

��� [ (A�A)−1
A�x

]
8

��� , q̂8 = arg
{[(

A�A
)−1

A�x
]
8

}
, f̂2

= =

1
#

P⊥Ax2, where PA = A
(
A�A

)−1
A� is the projection matrix onto the subspace spanned by the columns of60

A (signal subspace) and P⊥A = I−PA is the projection matrix onto the noise subspace where the relationships

with g0, 1 and Δg are omitted for the sake of readability.

3.2. Approximation of the Maximum Likelihood Criterion

As stated in (3), the 2S-MLE requires a computationally expensive maximization over a three-dimensional

parameter space. The aim of this contribution is to adapt the AMLE presented in [6] for spectral analysis65

to the problem of time-delay estimation to reduce the computational burden.

The likelihood criterion, noted ! (g0,Δg, 1) to be maximized and defined in (3) can be written as follows:

! (g0,Δg, 1) , ‖PAx‖2 = x�PAx =
(
A�x

)� (
A�A

)−1
A�x, where the inverse matrix can be explicitly written

with respect to (w.r.t.) the path separation Δg:
(
A�A

)−1 ∝ 1
1−|2 (Δg) |2


1 −2(Δg)

−2(Δg)∗ 1

 , with 2(Δg) ∝
a�0 a1 the auto-correlation of the signal expressed in Δg. Now if one expands the matrices product, the

projector PA results in a finite sum of similar terms: PA =
a0a

�
0 +a1a�1 −2 (Δg)∗a0a�1 −2 (Δg)a1a�0

1−|2 (Δg) |2 , and, with, for

8 ∈ {0, 1}, V8 = a�
8
x, the likelihood criterion can be expressed as

! (g0,Δg, 1) =
V∗0V0 + V∗1V1 − 2(Δg)∗V∗0V1 − 2(Δg)V∗1V0

1 − |2(Δg) |2 . (4)

Expression (4) can be further simplified by exploiting the fact that Δg is very small. In that case both 2(Δg)

and V1 can be approximated with a truncation of their Taylor series: 2(Δg) = 1 +∑
=∈N∗ 2=Δg

= , |2(Δg) |2 =

1 +∑
=∈N∗ 3=Δg

= , V1 = V0 +
∑
=∈N∗ V1,=Δg

=, where 2=, 3= and V1,= are the =-th Taylor coefficients of 2(Δg),

|2(Δg) |2 and V1, respectively.70
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Proof. see Appendix A. �

By truncating and expanding theses series, it is possible to obtain a 3rd order Taylor development:

! (g0,Δg, 1) ≈ !Taylor (g0,Δg, 1) =
3∑
==0

!= (g0, 1)Δg= (5)

with !0 (g0, 1) = − �2

32
, !1 (g0, 1) = − �3

32
, !2 (g0, 1) = − 1

32

(
�4 − 34

32
�2

)
, !3 (g0, 1) = − 1

32

(
�5 − 34

32
�3

)
, and �=

and 3= can be expressed w.r.t. the baseband signal samples thanks to (A.4) and (A.7).

Proof. see Appendix B. �

3.3. Description of the Algorithm75

3.3.1. Intuition

In (5), the dependency on the relative delay Δg is simplified. To better illustrate the meaning of this

approximation, one can plot the real likelihood criterion ! (g0,Δg, 1) and compare it to its different order

Taylor approximations. In Fig. B.3, a cut at the true values of g0 and 1 of the exact likelihood function

is displayed along with the corresponding Taylor approximations (from order 0 to 3). These figures are80

two illustrations without noise, for a signal GPS L1 C/A with �B = 4 MHz, 1 = 0, d1/d0 = 0.5 and

Δq = q1 − q0 = 0. The only difference between the two figures is the relative delay which is small in Fig.

B.3a and larger in Fig. B.3b. From these figures, it is clear that the order of the Taylor approximation

is important: for very small Δg (Fig. B.3a), the likelihood is well represented at the 2nd order around the

extremum area, which is of interest since the criterion is maximized for the correct value of Δg. In the case85

of a larger Δg (Fig. B.3b), the 2nd order is not fitting the true likelihood function around the extremum

anymore. On the other hand, the 3rd order provides a good approximation. The true likelihood function

maximum being approximated by one of the two extrema of the 3rd order polynomial.

3.3.2. Resolution of the 3rd order polynomial

To obtain an estimation of Δg, one wants then to maximize the likelihood criterion. The observations90

made from Fig. B.3 suggest to relate the maximum of the likelihood function to one of the extrema of the

3rd order Taylor approximation. These extrema can be obtained by zeroing the first derivative of (5). Then,

the correct extremum is the one that has a negative second derivative. Consequently, to obtain a closed

form of Δ̂g from (5), one can do as follows: i) Find the two closed form candidates Δg1 and Δg2 by zeroing

the first derivative of (5) and ii) pick the candidate that has a negative curvature.95

3.3.3. Wrap-up of the algorithm

To sum up, the 3rd order Taylor approximation of the likelihood function allows to find a closed-form

solution for the estimated relative delay Δ̂g for all g0 and 1. Once the procedure presented in the previous
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paragraph is done, one can inject Δ̂g in the Taylor approximation of the likelihood function (5). The MLE

(3) turns to an AMLE defined by

(ĝ0, 1̂) = argmin
g0 ,1

(
!Taylor (g0, Δ̂g(g0, 1), 1)

)
. (6)

The proposed AMLE is summarized in the Algorithm 1.

In terms of complexity, the 2S-MLE, presented in (3), is a three-dimensional maximization problem. The

AMLE reduces this to a two-dimensional problem which is similar to a single source MLE.

3.4. Discussion on the Approximation Validity100

Based on Appendix A, the AMLE cannot be expected to perform well when the path separation is too

important. Consequently, it is necessary to study the goodness-of-fit between the auto-correlation function

2(g) and its 4th order Taylor approximation involved in the approximation of the likelihood function. Fig.

B.4 presents the exact and 4th order Taylor approximation of the auto-correlation of a GPS L1 C/A signal,

sampled at different values of the sampling frequency �B. Comparing different values of �B here is similar105

to comparing different qualities of receivers where the baseband signal has been sampled at a frequency

equal to the RF front-end bandwidth. In this figure, the effect of �B on the resulting shape of the exact

auto-correlation function is clearly visible: the larger �B, the more oscillations along the slopes one will

observe. It is not surprising that the Taylor approximation is sensitive to these oscillations since they are

impossible to model with a 4th order polynomial. Consequently, the Taylor approximation will be valid for110

a larger range of time delays around 0 when the signal will have a smaller bandwidth.

4. Performance on Simulated Data

4.1. Simulation Set-Up

To look at the performance of the AMLE, the MSE of the estimated path separation is compared to

the MSE of the 2S-MLE defined in Sec. 3.1. The estimation performance of the signal time-delay g0 is also115

investigated with a comparison between the AMLE, the 2S-MLE and a standard single source processing.

A GPS L1 C/A signal is considered with RF front-end bandwidth set to 4 MHz. The path separation

considered is set to 0.085 C/A chips, two phase differences are considered: Δq = c/3 and Δq = 2c/3, and

the relative amplitude is set to 0.5. Considering the model approximations, the AMLE does not look at

Δg candidates greater than 0.25 C/A chips, consequently, the RMSE is upper bounded, which may lead120

to RMSE smaller than the CRB at low SNRno. In order to fairly compare the AMLE and the 2S-MLE

performance, the same restriction has been applied to the 2S-MLE. Each point is estimated with 2000 Monte

Carlo simulations.
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4.2. Cramér-Rao Bounds

From the joint delay-Doppler estimation problem for the estimation of &) = (f2
= , (0, d0, q0, (1, d1, q1)125

presented in [12], and its corresponding Fisher Information Matrix (FIM) F& |& , it is straightforward to

obtain an expression of the FIM for the vector of parameters under study /) = (f2
= , g0,Δg, 1, d0, q0, d1, q1)

using F/ |/ =
(
m&
m/)

))
F& |&

m&
m/)

, where m&
m/)

is the Jacobian of the application for which the image of / is & ,

defined by the constraints derived from the close-to-ground assumptions enumerated in Sec. 2.2: 10 = 11 = 1

and Δg = g1 − g0. The CRB for the estimation of / is the inverse of the resulting FIM.130

4.3. Results

Fig. B.5 presents the root MSE (RMSE) of both AMLE and 2S-MLE for the estimation of the path

separation. For both relative phase Δq, the performance of the proposed algorithm AMLE and the 2S-MLE

are similar over a wide range of SNR. This is true up to a certain SNR point (about 42 dB) where the bias

induced by the Taylor approximation becomes larger than the standard deviation. The AMLE approach135

seems a promising solution for scenarios with a SNR that ranges from 30 dB to 42 dB.

Another result is shown in Fig. B.6, where the RMSE of the AMLE, the 2S-MLE and the 1S-MLE for

the estimation of the main signal time-delay are compared. As expected for the single source processing, the

bias induced by the misspecification appears at a given SNR level [17]. Again the AMLE and the 2S-MLE

present very similar performance and one can notice that the bias induced by the Taylor approximation140

visible in Fig. B.5 does not appear for the estimation of the direct signal time-delay. This suggests that the

AMLE can be used as a multipath mitigation technique for robust navigation applications.

5. Conclusion

In this paper, an estimator based on the 3rd order Taylor approximation of the likelihood criterion has

been presented for the time-delay estimation of two closely spaced sources. It is of particular interest in145

ground-based GNSS-R where a direct signal and its reflection from a reflecting surface impinges a receiver

antenna. To illustrate this approximate MLE, a few scenarios have been selected and simulations were run

in order to compare its MSE to the exact 2S-MLE and the corresponding CRB for the estimation of the

path separation. Results show that the proposed AMLE and the 2S-MLE have similar performance for a

large range of SNR. The AMLE performance for the estimation of the main signal was also compared to the150

2S-MLE and a misspecified 1S-MLE. A key result from this study is that the AMLE turns out to be a good

candidate for multipath mitigation, again providing a performance equivalent to the 2S-MLE.
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Appendix A. Details on the Taylor Approximation of c and #1 Functions

Appendix A.1. Auto-correlation Function

From the discrete signal model, if the number of elements #2 − #1 is very large, the auto-correlation

function 2(Δg) can be written as an integral: 2(Δg) = a�0 a1 = �B
∫
R
B(C − g0)∗B(C − g0 − Δg)4 9l21ΔgdC =

�B4
9l21Δg

∫
R
B(D)∗B(D −Δg)dD. Then using the Fourier transform properties over the hermitian product and

the sum definition of the Fourier transform:

2(Δg) = �B4 9l21Δg
∫ �B/2

−�B/2

(
1

�B

#2∑
==#1

B(=)B)4− 92c 5 =)B
)∗ (

1

�B

#2∑
==#1

B(=)B)4− 92c 5 =)B
)
4− 92c 5 Δgd 5 (A.1)

= s�
(∫ 1/2

−1/2
.( 5 ).( 5 )� 4− 92c 5 �BΔgd 5

)
s 4 9l21Δg (A.2)

where, for = ∈ [#1, #2], s = (. . . , B(=)B), . . . )) , .( 5 ) =
(
. . . , 4 92c 5 =, . . .

)) . Consequently, the Fourier

coefficients for the auto-correlation function are the successive derivatives of (A.2) evaluated when Δg = 0:

2= =
1

=!

m=2(Δg)
mΔg=

����
Δg=0

=
1

=!

=∑
:=0

s�D: (0)s( 9l21)=−: , where D: (g) = (− 92c�B):
∫ 1/2

−1/2
5 :.( 5 ).( 5 )� 4− 92c 5 gd 5 .

(A.3)

When expressed with g = 0, D: (0) is the :th derivative of a sine cardinal function which can be iteratively

computed (see Appendix A.3). If Δg is very small, the Taylor series for the auto-correlation term is:

2(Δg) =
∑
=∈N

2=Δg
= = 1 +

∑
=∈N∗

2=Δg
= and |2(Δg) |2 =

∑
=∈N

(
=∑
:=0

2:2
∗
=−:

)
Δg= = 1 +

∑
=∈N∗

3=Δg
=. (A.4)

Appendix A.2. Cross-correlation Function

Similarly, when the number of element is large enough, the cross-correlation between a1 and the data x

can be expressed as V1 = a�1 x = �B
∫
R

(
B(C − g0 − Δg)4− 92c 521 (C−g0−Δg)

)∗
G(C)dC. In the frequency domain,

V1 = �B

∫ �B/2

−�B/2

(
1

�B

#2∑
==#1

B(=)B)4− 92c ( 5 + 521)=)B
)∗ (

1

�B

#2∑
==#1

G(=)B)4− 92c 5 =)B
)
4 92c 5 (g0+Δg)d 5 (A.5)

= s�U�
(
521

�B

) ©«
1/2∫

−1/2

.( 5 ).( 5 )� 4 92c 5 �B (g0+Δg)d 5
ª®®¬ x, (A.6)

where U(1) = diag
(
. . . , 4− 92c1=, . . .

)
#1≤=≤#2

. Then the Taylor series for the cross-correlation term is

deduced from the successive derivatives of (A.6):

V1,: =
1

:!

m: V1

mΔg:

����
Δg=0

=
1

:!

(
D:

(
g0

)B

)
U

(
521

�B

)
s

)�
x =

1

:!
'
(:)
x,Ds
(g0, 1 52). (A.7)
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The term '
(:)
x,Ds
(g0, 1 52) is actually the cross-correlation between the data x and the :th derivative of the

signal s. Similarly to the auto-correlation term, it is expressed w.r.t. the successive derivatives of a sine160

cardinal which can be iteratively computed as detailed in Appendix A.3. Therefore, for small values of Δg,

the Taylor series for the cross-correlation term is: V1 =
∑
=∈N V1,=Δg

= = V0 +
∑
=∈N∗ V1,=Δg

=.

Appendix A.3. Note on the Sine Cardinal Derivatives

The Taylor coefficients derived in the previous section all depend on the successive derivatives of a sine

cardinal of the form: sinc(D−XD) =
∫ 1/2
−1/2 4

92c 5 (D−XD)d 5 . If one calculates the :th derivative of this expression,
m:sinc(D−XD)

mXD:
= (− 92c):

∫ 1/2
−1/2 5

:4 92c 5 (D−XD)d 5 , a first integration by parts yields

m:sinc(D − XD)
mXD:

= (− 92c):
[
5 :4 92c 5 (D−XD)

92c(D − XD)

]1/2
−1/2
− : (− 92c):
92c(D − XD)

∫ 1/2

−1/2
5 :−14 92c 5 (D−XD)d 5 (A.8)

=
(− 92c):

92c(D − XD)

((
1

2

) :
4 9 c (D−XD) −

(
−1
2

) :
4− 9 c (D−XD)

)
+ :

D − XD
m:−1sinc(D − XD)

mXD:−1
. (A.9)

Then, depending on the parity of :, an iterative expression of the sine cardinal derivatives can be obtained:

m2=sinc(D − XD)
mXD2=

=
2=

D − XD
m2=−1sinc(D − XD)

mXD2=−1
+ (−1)=c2=sinc(D − XD) , for : = 2=, (A.10)

m2=+1sinc(D − XD)
mXD2=+1

=
2= + 1
D − XD

m2=sinc(D − XD)
mXD2=

+ (−1)=+1c2=+1 cos(c(D − XD))
c(D − XD) , for : = 2= + 1. (A.11)

Appendix B. Details on the Taylor Approximation of the Likelihood Criterion

Starting from (4), reminded here, ! (g0,Δg, 1) =
V∗0V0+V∗1V1−2 (Δg)∗V∗0V1−2 (Δg)V∗1V0

1−|2 (Δg) |2 , each term can be expressed

as a Taylor series:

V∗1V1 = V
∗
0V0 +

∑
=∈N∗

(
=∑
:=0

V∗1,: V1,=−:

)
Δg= , 2(Δg)∗V∗0V1 = V∗0V0 +

∑
=∈N∗

(
=∑
:=0

2∗: V
∗
0V1,=−:

)
Δg= (B.1)

2(Δg)V∗1V0 = V∗0V0 +
∑
=∈N∗

(
=∑
:=0

2: V
∗
1,=−: V0

)
Δg= , 1 − |2(Δg) |2 = −

∑
=∈N∗

3=Δg
=. (B.2)

Then, by reordering these terms, the likelihood criterion can be written as follows:

! (g0,Δg, 1) = −
∑
=∈N∗ �=Δg

=−1∑
=∈N∗ 3=Δg=−1

with �= ,
=∑
:=0

V∗1,: V1,=−: − 2
∗
: V
∗
0V1,=−: − 2: V∗1,=−: V0. (B.3)

The auto-correlation function Taylor coefficients, expressed with the derivatives of the sine cardinal present

a number of symmetries that simplify the expression of �= and 3=: with 2∗1 = −21, 2∗3 = −23, one can

deduce 31 = 33 = 0 and similarly �1 = 0. Consequently, if the Taylor series in (B.3) are truncated to the

9



3rd order, the likelihood criterion reduces to ! (g0,Δg, 1) ≈ − �2+�3Δg+�4Δg
2+�5Δg

3

32+34Δg2 . Finally, using the series

representation of the denominator, the criterion can be written as a 3rd order Taylor expansion as in

−1
32 + 34Δg2

≈ − 1

32

(
1 − 34

32
Δg2

)
⇒ ! (g0,Δg, 1) ≈ !Taylor (g0,Δg, 1) =

3∑
==0

!= (g0, 1)Δg=, (B.4)

with !0 (g0, 1) = − �2

32
, !1 (g0, 1) = − �3

32
, !2 (g0, 1) = − 1

32

(
�4 − 34

32
�2

)
, !3 (g0, 1) = − 1

32

(
�5 − 34

32
�3

)
.165
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signal 1
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4

Figure B.1: GNSS-R geometry with the local elevation angle 4 of the transmitting satellite ) and the height ℎ of the receiver
'.

Figure B.2: Path separation evolution with regard to the local elevation 4 of the transmitting satellite for a receiver height
ℎ = 25m.
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(a) Δg = 1/16 L1 C/A chips (∼ 18.31m).

(b) Δg = 1/8 L1 C/A chips (∼ 32.63m).

Figure B.3: Illustration of the likelihood criterion Taylor approximations at different orders and relative delay Δg.
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Algorithm 1: Approximate Maximum Likelihood estimator.
// Clean replica Taylor coefficients. These can be computed before-hand, they do

not depend on the data vector x.
1 Compute D=s using (A.3) and Appendix A.3;
2 Compute 2= using (A.3) and 3= using (A.4);
// Likelihood criterion Taylor approximation:

3 Compute V0 and V1,= using (A.7);
4 Compute �= using (B.3);
5 Compute != using (5);
// Polynomial solution to get Δg for all g0 and 1:

6 Δg1/2 =
−!2±

√
X

3!3
with X = !2

2 − 3!1!3; // X is the reduced discrimant.

7 Δ̂g(g0, 1) = argminΔg1 ,Δg2 (2!2 + 6!3Δg);
// Reduced maximization problem:

8 (ĝ0, 1̂) = argming0 ,1

(
!Taylor (g0, Δ̂g(g0, 1), 1)

)
;

9 Evaluate Δ̂g(ĝ0, 1̂);
10 return ĝ0, Δ̂g, 1̂.
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Figure B.4: Exact (plain lines) and 4th order Taylor approximation (dashed lines) auto-correlation function for different
sampling frequencies �B ∈ {4, 8, 24} MHz.
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(a)

(b)

Figure B.5: RMSE for the estimation of the path separation 2Δg. (a) is with Δq = c/3 and (b) is with Δq = 2c/3.
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(a)

(b)

Figure B.6: RMSE for the estimation of the main signal time delay 2g0 with AMLE, 2S-MLE and 1S-MLE. (a) is with Δq = c/3
and (b) is with Δq = 2c/3.
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