GNSS L5/E5 Maximum Likelihood Synchronization Performance Degradation under DME Interferences

Lorenzo Ortega ^{1,2}, Corentin Lubeigt ^{1,3}, Jordi Vilà-Valls ³, Eric Chaumette ³

¹TéSA Toulouse

2 IPSA Toulouse

3 ISAE-SUPAERO Toulouse

Wednesday, April 26, 2023

Figure: Illustration of a GNSS system interfered by a DME transmitter.

4 D F

 QQ

Previous Results

Figure: MSE and bias for the time-delay estimation with a chirp centered at $f_i=0$, for different jammer amplitudes A_i . Chirp bandwidth 1 MHz and initial jammer phase $\phi = 0$.

4 **D** F

Background

• Misspecified CRB

Figure: MSE and bias for the time-delay (left) and Doppler (right) estimation with a chirp centered at $f_i = 0$ MHz, for different jammer amplitudes $A_i = 10$. Chirp bandwidth 2 MHz and initial jammer phase $\phi = 0$.

• Signal Model

- Correctly Specified Signal Model
- Misspecified Signal Model
- How to Compute the Bias: Kullback-Leibler Divergence
- How to Compute the MCRB
- MSE Computation and Results for the DME Interference Models

4 0 3

Signal Model

Correctly Specified Signal Model [\[3\]](#page-14-0): A GNSS band-limited signal $s(t)$, with bandwidth B, transmitted over a carrier frequency f_c $(\lambda_c = c/f_c)$ is considered in this study. The baseband output of the receiver's Hilbert filter can be approximated by,

$$
x(t;\eta) = \alpha s(t-\tau) e^{-j2\pi f_c(b(t-\tau))} + I(t) + n(t), \qquad (1)
$$

with $\boldsymbol{\eta} = (\tau, b)^\top$, $I(t)$ an unknown interference, $n(t)$ a complex white Gaussian noise. The discrete vector signal model is built from $\mathcal{N}_1 \leq k \leq \mathcal{N}_2$ samples at $\mathcal{T}_s = 1/\mathcal{F}_s$,

$$
x = \alpha a(\eta) + n = \rho e^{j\Phi} a(\eta) + n = \alpha \mu(\eta) + 1 + n, \qquad (2)
$$

$$
a(\eta) = (\ldots, s(kT_s - \tau)e^{-j2\pi f_c(b(kT_s - \tau)} + \frac{1}{\alpha}I(kT_s)\ldots)^{\top}.
$$
 (3)

The unknown deterministic parameters can be gathered in vector $\bm{\epsilon}^\top = \left(\sigma_n^2, \rho, \Phi, \bm{\eta}^\top\right) = \left(\sigma_n^2, \bm{\theta}^\top\right)$, with $\rho \in \mathbb{R}^+, 0 \leq \Phi \leq 2\pi$. Then, $\mathsf{x} \sim \mathcal{CN}(\alpha \mathsf{a}(\boldsymbol{\eta}), \sigma_n^2 \boldsymbol{I}_N).$ Ω

Signal Model

• Misspecified Signal Model [\[2,](#page-14-1) [1\]](#page-14-2): The misspecified signal model represents the case where the interference is not considered. This nominal case leads to the definition of the misspecified parameter vector $\boldsymbol{\eta}' = [\tau', b']^\top$, and the complete set of unknown parameters $\bm{\epsilon'}^\top = \left[\sigma_n^2, \rho', \bm{\Phi}', \bm{\eta}'^\top\right] = \left[\sigma_n^2, \bm{\theta'}^\top\right]$, yielding the following signal model at the output of the Hilbert filter,

$$
x'(t; \eta') = \alpha' s(t - \tau') e^{-j2\pi f_c b'(t - \tau')} + n(t)
$$
 (4)

with $\alpha' = \rho' e^{j\Phi'}$ and the discrete vector signal model:

$$
x' = \alpha' \mu(\eta') + n \tag{5}
$$

$$
\boldsymbol{\mu}(\boldsymbol{\eta}') = (\ldots, s(kT_s-\tau')e^{-j2\pi f_c(b'(kT_s-\tau'))}, \ldots)^{\top}.
$$

The misspecified signal model is represented by a pdf denoted as $x' \sim \mathcal{CN}(\alpha' \mu(\eta'), \sigma_n^2 \bm{I}_N).$

ION IEEE PLANS [Monterey California](#page-0-0) Wednesday, April 26, 2023 7 / 17

つひひ

How to Compute the Bias: Kullback-Leibler Divergence

The pdfs of the Correctly Specified and Misspecified Signal Models are [\[4\]](#page-15-0):

$$
p_{\epsilon}(x; \epsilon) = \frac{1}{\pi N \sigma_n^{2N}} e^{\frac{-(x - \alpha a(\eta))^{H}(x - \alpha a(\eta))}{\sigma_n^{2}}}, \qquad (6)
$$

$$
f_{\epsilon'}(x'; \epsilon') = \frac{1}{\pi N \sigma_n^{2N}} e^{\frac{-(x - \alpha' \mu(\eta'))^{H}(x - \alpha' \mu(\eta'))}{\sigma_n^{2}}}. \qquad (7)
$$

When we consider a misspecified model and the corresponding MMLE, the estimation of the parameters of interest is biased. Those biased estimated parameters are commonly referred to as pseudo-true parameters. We denote them as $\boldsymbol{\theta}^{\top}_{pt} = [\rho_{pt}, \Phi_{pt}, \tau_{pt}, b_{pt}].$ The pseudo-true parameters are simply those that give the minimum Kullback-Leibler (KLD) Divergence $D(\rho_\epsilon||f_{\epsilon'})$ between the true and assumed models.

$$
\Delta \alpha = \alpha_{pt} - \alpha, \quad \Delta \eta = \eta_{pt} - \eta. \tag{8}
$$

How to Compute the MCRB

The MCRB was derived as an extension of the Slepian-Bangs formulas, and it is a combination of two information matrices $A(\theta_{pt})$ and $B(\theta_{pt})$

$$
MCRB(\theta_{pt}) = A(\theta_{pt})^{-1}B(\theta_{pt})A(\theta_{pt})^{-1},
$$
\n(9)

where

$$
A(\theta_{pt}) = \frac{2}{\sigma_n^2} \Re \left\{ (\delta m)^H \left(\frac{\partial^2 \alpha_{pt} \mu(\eta_{pt})}{\partial \theta_{pt} \partial \theta_{pt}^{-1}} \right) \right\} - B(\theta_{pt}),
$$

$$
B(\theta_{pt}) = \frac{2}{\sigma_n^2} \Re \left\{ \left(\frac{\partial \alpha_{pt} \mu(\eta_{pt})}{\partial \theta_{pt}} \right)^H \left(\frac{\partial \alpha_{pt} \mu(\eta_{pt})}{\partial \theta_{pt}} \right) \right\},
$$

 δ m $\triangleq \alpha$ a (η) – $\alpha_{pt}\mu(\eta_{pt}) = \alpha \mu(\eta) + I - \alpha_{pt}\mu(\eta_{pt})$ the mean difference between true and misspecified models.

We have derived closed-expressions of these formulas that depend only on the signal and interference samples. Ω

Figure: Ambiguity function of the GPS L5Q signal. The integration time is set to 10 ms, $F_s = 20$ MHz.

 299

The following scenario is proposed We consider 7 DME signals interfering the GNSS receiver, with $f_i = [-0.5, -0.25, 0.15, 0, 0.15, 0.25, 0.5]$ MHz, and arriving at the receiver [1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75] ms after the first chip of the GNSS PRN code.

Figure: Ambiguity function of the GPS L5Q signal. The integration time is set to 10 ms, $F_s = 20$ MHz. $I_i = \{30, 32\}$ dB.

ION IEEE PLANS [Monterey California](#page-0-0) Wednesday, April 26, 2023 11 / 17

Figure: RMSE of the time-delay of the GPS L5Q signal. The integration time is set to 10 ms, $F_s = 20$ MHz and $I_i = \{30, 32\}$ dB.

 299

Figure: RMSE of the Doppler of the GPS L5Q signal. The integration time is set to 10 ms, $F_s = 20$ MHz and $I_i = \{30, 32\}$ dB.

4 D.K. \prec

Figure: Ambiguity function of the GPS L5Q signal. The integration time is set to 10 ms, $F_s = 20$ MHz. $I_i = 34dB$.

 QQ

- [1] Corentin Lubeigt et al. "Untangling first and second order statistics contributions in multipath scenarios". In: Signal Processing 205 (2023), p. 108868. ISSN: 0165-1684. DOI: [https://doi.org/10.1016/j.sigpro.2022.108868](https://doi.org/https://doi.org/10.1016/j.sigpro.2022.108868).
- [2] Hamish McPhee et al. "On the accuracy limits of misspecified delay-Doppler estimation". In: Signal Processing 205 (2023), p. 108872. ISSN: 0165-1684. DOI: [https://doi.org/10.1016/j.sigpro.2022.108872](https://doi.org/https://doi.org/10.1016/j.sigpro.2022.108872).
- [3] D. Medina et al. "A New Compact CRB for Delay, Doppler and Phase Estimation - Application to GNSS SPP & RTK Performance Characterization". In: IET Radar, Sonar & Navigation (2020).

[4] L. Ortega, J. Vilà-Valls, and E. Chaumette. "Theoretical Evaluation of the GNSS Synchronization Performance Degradation under Interferences". In: Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022). 2022, pp. 3758–3767. DOI: [https://doi.org/10.33012/2022.18564](https://doi.org/https://doi.org/10.33012/2022.18564).

ION IEEE PLANS [Monterey California](#page-0-0) Wednesday, April 26, 2023 17/17

4 D.K.