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Background

Figure: Illustration of a GNSS system interfered by a DME transmitter.
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Previous Results
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Figure: MSE and bias for the time-delay estimation with a chirp centered at
fi = 0, for different jammer amplitudes Ai . Chirp bandwidth 1 MHz and initial
jammer phase ϕ = 0.
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Background

Misspecified CRB
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Figure: MSE and bias for the time-delay (left) and Doppler (right) estimation
with a chirp centered at fi = 0MHz, for different jammer amplitudes Ai = 10.
Chirp bandwidth 2 MHz and initial jammer phase ϕ = 0.
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Signal Model

Correctly Specified Signal Model [3]: A GNSS band-limited signal
s(t), with bandwidth B , transmitted over a carrier frequency fc
(λc = c/fc) is considered in this study. The baseband output of the
receiver’s Hilbert filter can be approximated by,

x(t;η) = αs (t − τ) e−j2πfc (b(t−τ)) + I (t) + n (t) , (1)

with η = (τ, b)⊤, I (t) an unknown interference, n(t) a complex white
Gaussian noise. The discrete vector signal model is built from
N1 ≤ k ≤ N2 samples at Ts = 1/Fs ,

x = αa(η) + n = ρe jΦa(η) + n = αµ(η) + I + n, (2)

a(η) = (. . . , s(kTs − τ)e−j2πfc (b(kTs−τ) +
1
α
I (kTs). . . .)

⊤. (3)

The unknown deterministic parameters can be gathered in vector
ϵ⊤ =

(
σ2
n, ρ,Φ,η

⊤) = (σ2
n,θ

⊤), with ρ ∈ R+, 0 ≤ Φ ≤ 2π. Then,
x ∼ CN (αa(η), σ2

nIN).
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Signal Model

Misspecified Signal Model [2, 1]:The misspecified signal model
represents the case where the interference is not considered. This
nominal case leads to the definition of the misspecified parameter
vector η′ = [τ ′, b′]⊤, and the complete set of unknown parameters
ϵ′⊤ =

[
σ2
n, ρ

′,Φ′,η′⊤] = [σ2
n,θ

′⊤], yielding the following signal model
at the output of the Hilbert filter,

x ′(t;η′) = α′s(t − τ ′)e−j2πfcb′(t−τ ′) + n(t) (4)

with α′ = ρ′e jΦ
′
and the discrete vector signal model:

x′ = α′µ(η′) + n (5)

µ(η′) = (. . . , s(kTs − τ ′)e−j2πfc (b′(kTs−τ ′)), . . .)⊤.

The misspecified signal model is represented by a pdf denoted as
x′ ∼ CN (α′µ(η′), σ2

nIN).
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How to Compute the Bias: Kullback-Leibler Divergence

The pdfs of the Correctly Specified and Misspecified Signal Models are [4]:

pϵ(x; ϵ) =
1

πNσ2N
n

e
−(x−αa(η))H (x−αa(η))

σ2
n , (6)

fϵ′(x
′; ϵ′) =

1
πNσ2N

n

e
−(x−α′µ(η′))H (x−α′µ(η′))

σ2
n . (7)

When we consider a misspecified model and the corresponding MMLE, the
estimation of the parameters of interest is biased. Those biased estimated
parameters are commonly referred to as pseudo-true parameters. We
denote them as θ⊤

pt = [ρpt ,Φpt , τpt , bpt ].
The pseudo-true parameters are simply those that give the minimum
Kullback-Leibler (KLD) Divergence D(pϵ||fϵ′) between the true and
assumed models.

∆α = αpt − α, ∆η = ηpt − η. (8)
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How to Compute the MCRB

The MCRB was derived as an extension of the Slepian-Bangs formulas, and
it is a combination of two information matrices A(θpt) and B(θpt)

MCRB(θpt) = A(θpt)
−1B(θpt)A(θpt)

−1, (9)

where

A(θpt) =
2
σ2
n

ℜ

{
(δm)H

(
∂2αptµ(ηpt)

∂θpt∂θ
⊤
pt

)}
− B(θpt),

B(θpt) =
2
σ2
n

ℜ

{(
∂αptµ(ηpt)

∂θpt

)H (∂αptµ(ηpt)

∂θpt

)}
,

δm ≜ αa (η)− αptµ(ηpt) = αµ (η) + I − αptµ(ηpt) the mean difference
between true and misspecified models.

We have derived closed-expressions of these formulas that depend only
on the signal and interference samples.
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MSE Computation and Results

Figure: Ambiguity function of the GPS L5Q signal. The integration time is set to
10 ms, Fs = 20 MHz.
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MSE Computation and Results

The following scenario is proposed We consider 7 DME signals interfering
the GNSS receiver, with fi = [−0.5,−0.25, 0.15, 0, 0.15, 0.25, 0.5] MHz,
and arriving at the receiver [1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75] ms after the
first chip of the GNSS PRN code.

Figure: Ambiguity function of the GPS L5Q signal. The integration time is set to
10 ms, Fs = 20 MHz. Ii = {30, 32}dB.
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MSE Computation and Results
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Figure: RMSE of the time-delay of the GPS L5Q signal. The integration time is
set to 10 ms, Fs = 20 MHz and Ii = {30, 32}dB.
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MSE Computation and Results
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Figure: RMSE of the Doppler of the GPS L5Q signal. The integration time is set
to 10 ms, Fs = 20 MHz and Ii = {30, 32}dB.
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MSE Computation and Results

Figure: Ambiguity function of the GPS L5Q signal. The integration time is set to
10 ms, Fs = 20 MHz. Ii = 34dB.
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