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O R I G I N A L  A R T I C L E

On GNSS Synchronization Performance Degradation 
under Interference Scenarios: Bias and Misspecified 
Cramér–Rao Bounds

Lorenzo Ortega*1,2  Corentin Lubeigt2,3  Jordi Vilà-Valls3  Eric Chaumette3

1  INTRODUCTION

Global navigation satellite systems (GNSSs) (Teunissen & Montenbruck, 2017) 
appear in a plethora of applications, ranging from navigation and timing to Earth 
observation, attitude estimation, and space weather characterization. Indeed, reli-
able position, navigation, and timing information is fundamental in new appli-
cations such as intelligent transportation systems and autonomous unmanned 
ground/air vehicles, for which GNSSs have become the cornerstone source of posi-
tioning data, and this dependence can only but grow in the future. However, GNSSs 
were originally designed to operate in clear sky nominal conditions, and their 
performance clearly degrades under harsh environments. Among non-nominal 
operation conditions, multipath, interference (i.e., intentional [jamming] or unin-
tentional), and spoofing conditions are the most challenging, presenting a key issue 
in safety-critical scenarios (Amin et al., 2016). Interference degrades GNSS per-
formance and can lead to a denial of service or even counterfeit transmissions to 
control the receiver positioning solution. These effects have been reported in the 
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Abstract
Global navigation satellite systems (GNSSs) play a key role in a plethora of appli-
cations, ranging from navigation and timing to Earth observation and space 
weather characterization. For navigation purposes, interference scenarios are 
among the most challenging operation conditions, with a clear impact on the 
maximum likelihood estimates (MLEs) of signal synchronization parameters. 
While several interference mitigation techniques exist, an approach for theoreti-
cally analyzing GNSS MLE performance degradation under interference, which 
is fundamental for system/receiver design, is lacking. The main goal of this 
contribution is to provide such analysis, by deriving closed-form expressions of 
the misspecified Cramér–Rao (MCRB) bound and estimation bias, for a generic 
GNSS signal corrupted by interference. The proposed bias and MCRB expres-
sions are validated for a linear frequency-modulation chirp signal interference.
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state of the art, and several interference mitigation countermeasures have been 
proposed (Amin et al., 2017; Arribas et al., 2019; Borio & Gioia, 2021; Chien, 2015 
2018; Fernández-Prades et al., 2016; Liu et al., 2022; Morales-Ferre et al., 2020; 
Pirayesh & Zeng, 2022).

It is well known that interference impacts the maximum likelihood estimator 
(MLE) of signal synchronization parameters (i.e., delay, Doppler, phase), which 
plays a key role in baseband signal processing in standard two-step GNSS receiv-
ers (Teunissen & Montenbruck, 2017). While several interference mitigation tech-
niques exist (Morales-Ferre et al., 2020), an approach for theoretically analyzing 
the GNSS MLE performance degradation induced by an interference (or a set of 
interferences) is lacking, yet fundamental for system/receiver design. From an esti-
mation perspective, because the system of interest can be formulated as a Gaussian 
conditional signal model (CSM) under nominal conditions, it is sound to obtain 
the corresponding Cramér–Rao bound (CRB) (Trees & Bell, 2007). Indeed, the CRB 
gives an accurate estimation of the mean square error (MSE) of the MLE in the 
asymptotic region of operation, i.e., in the large sample and/or high signal-to-noise 
ratio (SNR) regimes of the CSM (Renaux et al., 2006; Stoica & Nehorai, 1990). Even 
if CRBs for different GNSS receiver architectures under nominal conditions are 
available in the literature (see (Medina et al., 2020), (Medina et al., 2021), (McPhee 
et al., 2023a) and references therein), such performance bounds have not been 
studied for the interference case of interest in this contribution.

The main hypothesis is that the receiver is not aware that an interference is 
present, and therefore, it assumes that the received signal is only corrupted by 
additive Gaussian noise as under nominal conditions. This assumption implies 
that the signal model at the receiver input and the assumed signal model do not 
coincide, that is, there exists a model mismatch. In this case, the MLE is no lon-
ger unbiased, and theoretical characterization leads to closed-form expressions of 
i) the estimation bias induced by the interference (this result was first presented 
in Ortega et al. (2022)) and ii) the corresponding misspecified CRB (MCRB) 
(Richmond & Horowitz, 2015), (Fortunati et al., 2017), (Lubeigt et al., 2023), 
(McPhee et al., 2023b). The proposed bias and MCRB expressions are validated 
for a representative linear frequency-modulation (LFM) chirp signal interference. 
Notably, once a compact MCRB form is derived, this form can be used for i) the 
derivation of metrics that allow one to compare the robustness of different GNSS 
signals to interference and to assess the design of new GNSS signals and ii) the 
design of next-generation interference countermeasures.

2  TRUE AND MISSPECIFIED SIGNAL MODELS

2.1  Correctly Specified Signal Model

A GNSS band-limited signal s t( )  with bandwidth B  is transmitted over a car-
rier frequency f c f fc c c c c(� � �= / = 2, ).  The synchronization parameters to be 
estimated are the delay and Doppler shift, �� = ,( )� b  .  Under the narrowband 
assumption, the influence of the Doppler parameter on the baseband signal sam-
ples is negligible, s b t s t((1 )( )) ( )� � � �� �  (Dogandzic & Nehorai, 2001). For short 
observation times, a good approximation of the baseband output of the receiver’s 
Hilbert filter (GNSS signal + interference) is given as follows (Skolnik, 1990):

	 x t s t e I t n tj f b tc( ) ( ) ( ); = ( )2 ( ( ))�� � � � �� � �� � � (1)
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where I t( )  is a band-limited unknown interference (or set of interferences) within 
the frequency band of interest, n t( )  is complex white Gaussian noise with an 
unknown variance σn

2 ,  and � �= e j�  is a complex gain. The discrete vector signal 
model is built from N N N= 11 2� �  samples at T F Bs s= 1/ 1 /≤ :  

	 x a n a n I n= ( ) = ( ) = ( )� � ��� �� �� ��� � � �e j� � (2)

with x = ( , , ) x kTs� � ,  I = ( , , ) I kTs� � ,  n = ( , ), n kTs� �,  N k N1 2≤ ≤  
signal samples, and 

	 a( ) = ( , ( ) 1 ( ). )2 ( ( )��  s kT e I kTs
j f b kT

s
c s� �� ��

�
� �  � (3)

�� ��( ) = ( , ( ) . )2 ( ( )
 s kT es

j f b kTc s� � �� � �  � (4)

The unknown deterministic parameters can be gathered in vector 
  = , , , = ,2 2� � �n n� �� ��� � � �,  with � �� � �� , 0 2� .  The correctly spec-
ified signal model is represented by a probability density function (pdf) 
denoted as p ( ; )x ,  which follows a complex circular Gaussian distribution, 
x a CN � �( ), 2�� n NI� �.

2.2  Misspecified Signal Model

The misspecified signal model represents the case in which interference 
is not considered, i.e., when a mismatched MLE (MMLE) is implemented 
at the receiver. This nominal case leads to the definition of the misspecified 
parameter vector � � ��� =[ , ]� b   and the complete set of unknown parameters 
� � � � ��� �� � ��� ��   = , , , = ,2 2� � �n n� �� �� ,  yielding the following signal model at the 

output of the Hilbert filter: 

	 � � � � � � �� � � �x t s t e n tj f b tc( ; ) = ( ) ( )2 ( )�� � � � � � (5)

where ′n t( )  is complex white Gaussian noise with an unknown variance ��n
2  and 

� � �� �= e j� .  Again, we can build the discrete vector signal model from N  samples 
at T Fs s= 1/ :  

	 � � � � � � � � � � �x n= ( ) , ( ) = ( , ( ) , )2 ( )� � � ��� �� �� ��  s kT es
j f b kTc s  � (6)

The misspecified signal model is represented by a pdf denoted as f ′ ′ ( ; )x  that 
follows a complex circular Gaussian distribution, � � �x  CN ( ( '), )2� ��� �� n NI .  We 
then have the following:

p e f
N

n
N N

n
N

H

n
  ( ; ) = 1 ( ; ) = 1

2

( ( )) ( ( ))

2
2x x

x x

� � � �

� �
�

� � �

� � �
�

a a�� ��

ee
H

n

� � � � � � �
�

( ( )) ( ( ))
2

x x� �
�

�� �� �� ��

� (7)

Note that considering the misspecified signal model induces a bias to the corre-
sponding MMLE. These biased estimated parameters are commonly referred to as 
pseudotrue parameters, ��pt pt pt pt ptb = , , ,� ���� �� .  For this particular contribution, 
we are not interested in the noise variance parameter.
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3  MMLE BIAS COMPUTATION VIA KULLBACK–
LEIBLER DIVERGENCE

Pseudotrue parameters are simply those that give the minimum 
Kullback–Leibler divergence (KLD) (Fortunati et al., 2017), D p f( || ) =  ′  
E p fp

ln ln  ( ; ) ( ; )x x� � ��� ��� ,  between the true and assumed models, where 
Ep [ ]⋅  is the expectation with respect to the true model’s pdf: 

��
�� ��pt pD p f E f= ( || ) = ( ; )argmin argmin ln
� � � �� � � ��� ��� �   


x � (8)

E f N E N

E

p p n

p

 



��� �� � � ��� ��

�
� � � �

�ln ln ln = ( ) 2 ( )

( ) ( )

� �

� � �x a a�� �� ���� �� �� �� �� ��( ) ( ) ( ) ( )
2

�� � � � � � �� �
�

�

�

�
�

�

�

�
�

H

n

x a a� � �

�

� (9)

We aim to compute the pseudotrue parameters, ��pt pt pt pt ptb = , , ,� ���� �� .  We 
must then minimize Equation (8) with respect to the argument ��� ,  and the equa-
tion can be simplified as follows:
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We define the orthogonal projector � �A AI� �=  with �A A A A A=
1H H� �� ,  

which leads to the following: 
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Then, the parameters that minimize the KLD are as follows:

	 argmin
�

� � �� ����
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Here, � �pt pt
j pte=
�

 and ��pt pt ptb = ,��� �� .  This result may be connected to the 
asymptotic MMLE behavior (Fortunati et al., 2017):

	
�

�

� �

� � �

�

�
�
�

�
�
�

�

� �

�


 



= ( )

( ) ( )

= ( )
2

�� ��

�� �� �� ��

��
�� �� ��

H

H

SNR

x

xargmax �
���

� �

�
� �

� �

�

� � �

�





 



= ( ) ( )

( ) ( )
=

= (( )

�� �� ��

�� �� �� ��

��
�� �� ��

H

H pt
a

aargmax � ���� ��) =
2� �

�

�
�
�

�
�
� pt

� (10)

Because the pseudotrue parameters, obtained as the MMLE without noise, are 
those that give the minimum KLD between the true and assumed models, the bias 
is defined as �� � �= pt � ,  ���� �� ��= pt � .

4  CLOSED-FORM MCRB EXPRESSIONS FOR A BAND-
LIMITED SIGNAL UNDER INTERFERENCE

In Richmond & Horowitz (2015), the MCRB was derived as an extension of the 
Slepian–Bangs formulas, a result that was later expressed as a combination of two 
information matrices (A( )θθpt  and B( )θθpt )  in Fortunati et al. (2017):

	 MCRB A B A( ) = ( ) ( ) ( )1 1�� �� �� ��pt pt pt pt
� � � (11)

with the following relations: 

	 A m B( ) = 2 ( )
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Here, � � � � �m a �� �� �� �� �� �� ��� � � � � � �pt pt pt pt( ) = ( )I  is the mean difference 
between the true and misspecified models.

4.1  Single-Source Fisher Information Matrix

In B( )θθpt ,  one can recognize the Fisher information matrix (FIM) of a 
single-source CSM. A compact expression of this FIM, which depends only on the 
baseband signal samples, was recently derived in Medina et al. (2020). For com-
pleteness, we recall the following: 

	 B QWQ( ) =
2

2
��pt

s

n

HF
�

�� � � (12)

with 

	 W Q= , =

0
01 2

*
3
*

2 2,2 4
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3 4 3,3

w w w
w W w
w w W

j b
j

pt c pt pt�
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�
�
�
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�
�
�

�
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�ppt c

j pt

pt

e

�

�

0

0 0
0 0

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� (13)
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Here, the elements of W  can be expressed with respect to the baseband signal 
samples as follows: 

	
w

F
w

F
w

F

w
F

W

s

H

s

H

s

H

s

H

1 2 2 3
,1

4
,1

= 1 , = 1 , = 1 (0) ,

= 1 (0) ,

s s s Ds s V s

s DV s

∆

∆
22,2 3

2
3,3

,2= 1 , = (0)
F

W F
s

H
s
Hs D s s V s∆

�

s, the baseband sample vector, D,  V�,1 ( )� ,  and V�,2 ( )�  are defined as follows: 

s = , ( ),
1 2

 s nTs N n N� �
� �


� (14a)

D = , ,
1 2

diag  n
N n N� �

� �
� (14b)

V�,1
,

= 1 ( )q
k l q

k l q k l q
k l

� ��� �� � �
� �� � � � �� �� �cos � sinc � (14c)

	 V�,2
,

2= 2
( )

q k l q
cos k l q k l q

k lk l
� ��� �� � �� � �

� �� � � � �� �
�

�
�

sinc
sinc

��� �q 2
� (14d)

We refer the reader to Appendix B for details on the closed-form expressions of 
V∆,1 ( )q  and V∆,2 ( )q .

4.2  Model Mismatch Information Matrix

The matrix A( )θθpt  accounts for the model misspecification. Its elements can 
also be expressed in a compact form as a function of the baseband signal and inter-
ference samples as follows: 

	 A Q W BA( ) =
2

( )
, 2 ,.

*
,

�� �� ��pt p q
s

n
q p pt p q

F�� �� � �� ��� �� �� ���
 �

	 W w w wA A A A=[ ], = , 1,1 2 3 �� � �e ej
pt

j pt� �
��

�
� �

�
�


� (15)

with wA A
1 1,=[ , , ] w l

 ,  wA A
2 2,=[ , , ] w l

 ,  and wA A
3 3,=[ , , ] w l

  for 

l∈(1, , 6) .  Here, Qq p
�� �� ,.

 is the p-th row of the matrix Qq  (refer to Appendix A 

for Qq ).  With �� � �= � pt  and �b b bpt= � ,  WA  is obtained from the following: 
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with 

	 U( )p e j pn
N n N
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1 2
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�
� �

� �� � (17)

V�,0
,

=( )q k l q
k l

�� �� � �� �sinc � (18)

Proof. See Appendices A and B.� 

4.3  Implementation of the Bias and MCRB Expressions

In this section, we provide a step-by-step explanation of how to calculate the bias 
and MCRB of the synchronization parameters of the received signal:

	 x t s t e I t n tj f b tc( ) ( ) ( ); = ( )2 ( ( ))�� � � � �� � �� � � (19)



ORTEGA et al.    

•	 First, we must calculate the parameters � �pt pt
j pte=
�

 and ��pt pt ptb = ,��� ��  
from Equation (10). 

•	 Then, we compute the bias of the synchronization parameters as �� � �= pt � ,  
���� �� ��= pt � .  

•	 To compute the MCRB, we first compute the single-source FIM B( )θθpt .  This 
process is described in Section 4.1. 

•	 Then, we compute the model mismatch information matrix A( )θθpt .  To do 
this, we apply the following steps: 

–– We compute αα  from Equation (15). 
–– To compute WA ,  we define �� � �= � pt  and �b b bpt= � .  Then, we 

compute the elements of the matrix given by Equations (16a)–(16m). 
–– We next compute the matrices Qq ,  with q = {1, 2, 3, 4},  which are included 

in Appendix A. 
–– Finally, we compute A Q W BA( ) =

2
( )

, 2 ,.
*

,
�� �� ��pt p q

s

n
q p pt p q

F�� �� � �� ��� �� �� ���
 .  

•	 The MCRB is then computed as MCRB A B A( ) = ( ) ( ) ( )1 1�� �� �� ��pt pt pt pt
� � .  

5  VALIDATION

Let us consider the case in which a global positioning system (GPS) L1 C/A sig-
nal experiences interference from a jammer that is generating an LFM chirp signal, 
which is defined as follows: 

	 I t t e t
A t T

T
j t j

T
ic( ) = ( ) ,  ( ) =

0 <
0

2� ��
��

�
�

��
��� � for

otherwise
� (20)

where αc  is the chirp rate, Ai  is the amplitude, and T NTs=  is the waveform 

period. The instantaneous frequency is f t t td
dt c c( ) = =1

2
2

�
�� �� � ,  and therefore, 

the waveform bandwidth is B Tc=α .  We consider the case in which, after the 
Hilbert filter, the chirp is located at the baseband frequency, i.e., the central fre-
quency of the chirp is fi = 0.  Then, the chirp equation can be rewritten as follows: 

	 I t t e t
A t T

T
j t T j

T
ic( ) = ( ) , ( ) =

0 <
0

/2 2

� ��
��

�
��� � ��� � for

otherwise���
� (21)

The MSE and bias results for the parameters of interest, �� ��T T=[ , , ]� � ,  are 
shown in Figures 1–4, with respect to the SNR at the output of the matched fil-
ter (i.e., SNROUT )  and considering the following setup: a GNSS receiver with 
Fs = 4 MHz  and a chirp bandwidth equal to 2 MHz, with initial phase φ = 0  and 
amplitude Ai = 10.  The number of Monte Carlo iterations is set to 1000. In the 
results, one can observe that i) the root MSE ( MSE )  of the true parameter con-
verges to MCRB Bias+ 2 ,  ii) MSE  of the pseudotrue parameter converges to 
MCRB , and iii) MCRB  is always higher than CRB  (refer to (Medina et al., 

2020)), which represents the asymptotic estimation performance of the parame-
ters without any source of interference. Such results validate and prove the exact-
ness of the proposed MCRB and bias expressions. Finally, we emphasize that the 
MCRB characterizes the MMLE asymptotically and is therefore unable to evaluate 
any occurrences prior to the convergence region. Therefore, the calculation of the 
MSE of the MMLE also indicates the threshold from which the MCRB theoretically 
characterizes the MSE of the MMLE.
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In a second example, we evaluate the degradation caused by a single tone located 
at frequency fi = 0.5 MHz.  For this particular case, the interference samples 
are given by I = ( , , )2I A ei

j f kT ji s
 

� �� ,  which is a complex function, and can be 
rewritten as follows: 

	 I = ( , , ) = ( , (2 ) (22I A e I A f kT j f kTi
j f kT j

i i s i s
i s

  

� � � � �� � � �cos sin ��) , )� � 
� (22)

FIGURE 1 MMLE root MSE for the time-delay τ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a chirp signal with 
B = 2 MHz,  Ai = 10, and initial phase φ = 0.  The integration time is set to 2 ms.

FIGURE 2 MMLE root MSE for the Doppler Fd  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a chirp signal with 
B = 2 MHz,  Ai = 10, and initial phase φ = 0.  The integration time is set to 2 ms.
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where φ  is the initial phase of the tone and Ai  is the amplitude of the tone. For 
our particular scenario, we set the initial phase to π / 2  and Ai = 10.  In Figures 5, 
7, 9, and 11, we illustrate the MSE and bias results for the parameters of interest, 
�� ��T T=[ , , ]� � ,  as a function of the SNR at the output of the match filter, SNROUT .  
We set Fs = 4 MHz  and the integration time to 2 ms. Note that the MSE converges 
to the theoretical result, re-validating the closed-form expressions. Moreover, in 
Figures 6, 8, 10, and 12, we also include one scenario in which the integration time 

FIGURE 3 MMLE root MSE for the amplitude ρ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a chirp signal with 
B = 2 MHz,  Ai = 10, and initial phase φ = 0.  The integration time is set to 2 ms.

FIGURE 4 MMLE root MSE for the phase Φ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a chirp signal with 
B = 2 MHz,  Ai = 10, and initial phase φ = 0.  The integration time is set to 2 ms.
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is set to 4 ms. Note that for this particular case, the bias is lower and the Doppler esti-
mation performance is improved. This result can be proved theoretically owing to 
the closed-form expressions of the FIM, which allow us to assess how the different 
design parameters affect the calculation of the MSE of the MLE. For this particular 
case, increasing the integration time increases the dimension of the matrices D  
and D2 ,  which are related to the Fisher matrix parameters of the Doppler parame-
ter. As the integration time increases, the estimation performance improves.

FIGURE 5 MMLE root MSE for the time-delay τ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 2 ms.

FIGURE 6 MMLE root MSE for the time-delay τ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 4 ms.
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6  CONCLUSION

It is well documented in the literature that interference signals can have a sub-
stantial impact on the performance of GNSS receivers, but to the best of the authors’ 
knowledge, from an estimation perspective, an approach for theoretically analyz-
ing the impact of such interference on the first GNSS receiver stage (i.e., time-delay 

FIGURE 7 MMLE root MSE for the Doppler estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 2 ms.

FIGURE 8 MMLE root MSE for the Doppler estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 4 ms.
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and Doppler estimation) is lacking. In practice, at the receiver, there exists a model 
mismatch, and interference induces both i) an estimation bias and ii) a variance 
degradation. In this contribution, we provided theoretical closed-form expressions 
that characterize the MSE for the MLEs of the GNSS synchronization parameters, 
that is, bias and MCRB. Comparing these results with the standard CRB, associ-
ated with the unbiased MLEs without any interference, allows one to theoretically 

FIGURE 9 MMLE root MSE for the amplitude ρ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 2 ms.

FIGURE 10 MMLE root MSE for the amplitude ρ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 4 ms.
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characterize the performance degradation of the time-delay and Doppler estima-
tion. The exactness of the proposed expressions was validated for a representative 
case of a chirp interference jamming a GPS L1 C/A signal. Results were provided to 
demonstrate this validity and the impact on both time-delay and Doppler estima-
tion. Importantly, such analyses may provide a starting point for deriving robust-
ness metrics or new GNSS signals and for designing interference countermeasures.
� 

FIGURE 11 MMLE root MSE for the phase Φ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 2 ms.

FIGURE 12 MMLE root MSE for the phase Φ  estimation with respect to the true and 
pseudotrue parameters and the corresponding bounds. The interference is a tone signal with 
fi = 0.5 MHz,  Ai = 10,  and initial phase � �= / 2.  The integration time is set to 4 ms.
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APPENDIX

A  ON THE COMPUTATION OF A(θPT)

To compute A( )θθpt ,  continuous time expressions are considered: �( ; ) =t ��

s t e j b tc( ) ( )� � �� � � ,  � �� � �m t t I t t tpt pt( ) = ( ; ) ( ) ( ; ) = ( )�� �� ��� � 

A ,  with A( ) =t

� �( ; ), ( ), ( ; )t I t t pt�� ���� ��  and �� = , 1,� �e ej
pt

j pt� ��� � ,  which leads to the discrete 

expression �m A I= = ( ), , ( )

 �� �� �� �� �� ��pt�� �� .  The second derivative of interest can be 
written in matrix form as follows:
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where s(1) ( )⋅  and s(2) ( )⋅  refer to the first and second time derivatives, respectively. 
The product of the mean difference term and the Hessian matrix, under its discrete 
form, can be written as follows: 
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This product can also be written as follows: 
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with 

	
� � � � �

�
l s l s

j b kT

s l s
j

kT d kT e

I kT d kT e

c pt s pt

c

= ( ; ) ( )

( ) ( )

* * ( )

*

�� � �

�� bb kT
pt s pt l s

j b kTpt s pt c pt s ptkT d kT e( ) * * ( )( ; ) ( )� � ��� � �� � ��
�

When the number of samples tends to infinity, each βl  is the sum of three 
integrals: 
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This result leads to the expression in Equation (15): 
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Then, the computation of A( )θθpt  is reduced to three sets of integrals. The first 
set of integrals is as follows: 
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The corresponding closed-form expressions are given in Equations (16a)–(16f). 
The derivation of w1,1 ( )A ηη ,  w1,2 ( )A ηη ,  and w1,4 ( )A ηη  can be found in Lubeigt et al. 
(2020) (Equations (A.27), (A.28), and (A.29), respectively). The remaining terms 
are derived in Appendix B. The second set of integrals is as follows: 
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The corresponding closed-form expressions are given in Equations (16g)–(16l). 
The derivation of these terms is given in Appendix B. For the last set, we have the 
following: 
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B  DERIVATION OF INTERFERENCE CONVOLUTION 
TERMS USING FOURIER TRANSFORM PROPERTIES

B.1  Prior Considerations

First, we evaluate the Fourier transform of a set of functions. Remembering that 
the signal is band-limited by band B Fs≤ ,  we have the following: 
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To address any issue that may arise from the spectral shift due to the 
Doppler effect, one must simply set Fs  to be sufficiently large such that 
F B

c pt pt
s f b b b b2 2 | |, | |, | |� � �� �max .
A first expression is a simple application of the frequency shift relation that is 

obtained when using the Fourier transform of a signal multiplied by a complex 
time-varying exponential: 
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Therefore, we obtain the following: 
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Similarly, we obtain the following relation: 
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With the superscript (1) referring to the first time derivative, we have the following: 
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We have the Fourier transform of the k-th time derivative of a function as follows: 
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Thus, one directly obtains the following relation: 

	 s t e j f f b S f f bj f bt
c c

c(1) 2( ) 2 ( )� � �� � � � (B7)

Now, if s2  is defined as s t b ts t e j f btc
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Therefore, we obtain the following relation: 
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Finally, we take s1  as s t b s t e j f btc
1

2( ; ) = ( ) π  as follows: 
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B.2  Evaluation of the Integrals

B.2.1  Derivation of Integral wA
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We apply the Fourier transform properties over the Hermitian product:

	

w e u s u e s u u

j

j b j buc c
1,3

2 *( ) = ( ) ( )

=
2

A �� � � � �

�

� � �� ���� ���� �� �

�

�

� d


��
�

�
� �� �

�

�
�
�

�

�
�
�� ��

�
�

2 2

2
2 *

( ) ( )

= 1
2

2 d
d

d
f

S f f b S f e f

F

c
j f

Fs

Fs

� �� �

ss

T c

s

j f Hf b
F

f e f fTs
3

2 * 2( ) ( )
1
2

s D U s�
�

�
��

�

�
��

�

�
��

�

�
�� � �

�

� �

�� ��
� �

d
11
2

= 1
3

,0 2

�

�
�

�
��

�

�
�� �

�

�
��

�

�
��F T

f b
Fs

H

s

c

s
s V U D s� � ��

�
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with U( )p  defined in Equation (17) and V∆,0 ( )q  defined in Equation (18). Note 
the following relations:
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B.2.2  Derivation of Integral wA
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Hence, we obtain the following: 
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with U,  V∆,0 ,  and V∆,1 ( )q  defined in Equations (17), (18), and (14c), respec-
tively. Note that we have the following relations: 
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B.2.3  Derivation of Integral wA
1,6
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Therefore, we have the following: 
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with U( )⋅  defined in Equation (17), V�,0 ( )�  defined in Equation (18), V∆,1  
defined in Equation (14c), and V�,2 ( )�  defined in Equation (14d). Note the follow-
ing relations:
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B.2.4  Derivation of Integral wA
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We apply the Fourier transform properties over the Hermitian product: 
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B.2.5  Derivation of Integral wA
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Hence, we have the following relation: 
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with U  and V∆,0  defined in Equations (17) and (18), respectively, and D  defined 
in Equation (14b).

B.2.6  Derivation of Integral wA
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Hence, we have the following relation: 
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with U,  V∆,0 ,  and D  defined in Equations (17), (18), and (14b), respectively.
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B.2.7  Derivation of Integral wA
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with U,  V∆,0 ,  and V∆,1  defined in Equations (17), (18), and (14c), respectively.
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Therefore, we have the following: 
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Hence, we obtain the following relation: 
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with U,  V∆,0 ,  V∆,1,  and D  defined in Equations (17), (18), (14c), and (14b), 
respectively.

B.2.9  Derivation of Integral wA
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Hence, we have the following relation: 
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with U,  V∆,0 ,  and V∆,1  defined in Equations (17), (18), and (14c), respectively.

B.3  Matrix Properties

Based on the definitions of matrices V∆,0 ,  V∆,1,  V∆,2 ,  and U,  we have the 
following relations: 

•	 V V� �,0 ,0( ) = ( )q q
H� � �  

•	 V V� �,1 ,1( ) = ( )q q
H� � � �  

•	 V V� �,2 ,2( ) = ( )q q
H� � �  

•	 U U( ) = ( )p pH� � �  
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