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Abstract—For more than three decades Global Navigation
Satellite Systems (GNSS) were not only seen as a way to obtain
a precise position but also as a way to extract geophysical
information thanks to reflected signals from surfaces surrounding
the receiver as in GNSS Reflectometry (GNSS-R). One of the
main GNSS-R techniques, GNSS Interferometric Reflectometry
(GNSS-IR), consists of collecting a direct signal and its reflection
with a receiver close to the ground. Both signals coherently
interfere at the antenna level which results in an interference
pattern that can be interpreted in order to extract receiver
height or soil moisture for instance. So far, the underlying
assumptions for this technique were to consider a flat infinite
and homogeneous reflecting surface which contradicts with the
ability to map a surface that would need to be non-homogeneous.
In this study, an improvement of the signal model is proposed
to take into account variations of the reflection coefficient along
the surface. This work is limited to a 1D configuration. Closed-
form expressions are derived to invert the problem based on the
EXtended Invariance Principle (EXIP). Finally, numerical results
illustrate this approach.

Index Terms—GNSS-R, signal of opportunity, surface map-
ping, EXIP.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) were origi-
nally designed to obtain precise position, velocity and time
solutions anywhere on Earth [1], [2]. Soon after the first GNSS
constellation was operational, in the early 1990s, unwanted
reflected GNSS signals were observed in complex environ-
ments such as urban canyon or when the receiver was close
to a reflecting surface like sea surface. These reflections, or
multipaths, are in general seen as nuisance but they also
contain information about the reflecting surface position and
nature (roughness, reflectivity). The study of reflected GNSS
signals as signals of opportunity in order to extract additional
geophysical information is known as GNSS Reflectometry
(GNSS-R) and has been a field of research for the last three
decades [3], [4].

Among the possible ways to perform GNSS-R, ground-
based GNSS Interferometric Reflectometry (GNSS-IR) [5]
became a solution of choice, due to its simplicity. In this case,
the GNSS receiver is close to the ground so that the direct
and reflected signals coherently interfere. As a consequence,
it is possible to observe received power variations that can
be linked to the height of the receiver and the reflecting
coefficient of the surrounding soil. In particular, this is used
for tides monitoring [6], soil moisture retrieval [5], [7] or snow
depth estimation [8].

In all these GNSS-IR applications where the surface is
considered flat, there is a strong assumption: the reflection is
commonly modeled as specular such that the reflected energy
comes from an ellipse that corresponds to the intersection
between the first Fresnel zone and the reflecting surface [9].
The underlying assumption for this model is that the reflecting
surface is both homogeneous (reflecting coefficient is the same
everywhere) and infinite which makes the surface behaving
like a mirror. This contradicts with the will of mapping the
reflecting surface with different reflection coefficients as in
[10] where the estimated reflection coefficient is associated to
an elliptical area for a satellite at a given elevation.

As suggested in [11], a receiver not only collects energy
from a surface around the specular point but also from
regions farther away. In fact, every point around the receiver
is illuminated by the GNSS signal and re-transmits in all
directions so that all these contributors must be taken into
account to map a non-homogeneous surface.

In this work, the signal model is first improved to tackle
the problem of surface mapping based on GNSS-IR. More
precisely, the contribution of all elements on the ground
is considered to derive the signal model. To estimate the
ground reflections, this model has to be inverted. Neverthe-
less, no closed-form derivation exists. Thereby, the EXtended
Invariance Principle (EXIP) [12] is used to derive a closed-
form solution which is asymptotically close to the Maximum
Likelihood (ML).

The paper is divided as follows: Sec. II presents the signal
model along with a discussion on the achievable ground
resolution of this approach. In Sec. III, a closed-form solution
for the problem at hand is derived. Sec. IV presents numerical
results to illustrates the proposed approach. Finally, Sec. V
concludes this work and gives some insights for future works.

II. SIGNAL MODEL

A. Considered geometry

The problem at hand is a typical ground-based GNSS-R
scenario. A receiver R is placed at a height h above the
ground. It receives from a transmitting GNSS satellite Tl

placed at an elevation El the direct signal with a time-delay
τl and its reflections from the ground with their corresponding
excess delays. The local receiver elevation from the reflecting
point placed in yk is denoted ϕk as presented in Fig. 1.

As stated in Sec. I, when considering a uniform reflecting
area, the contribution of the ground can be modeled as a
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Fig. 1. Problem geometry with a single transmitting satellite.

specular reflection coming from an area defined by the first
Fresnel zone [9], [11], [13]. Nevertheless, this assumption is
not valid when one wants to map the ground, and each point
of the illuminated surface has to be taken into account with its
own complex reflection coefficient α. As a consequence, the
receiver R collects the sum of all the contributors from the
reflecting surface. The additional path ∆d for these ground
points compared to the direct path can be written as (see
Appendix A):

∆d(ϕk, El) = h

(
sin(El) +

1− cos(ϕk) cos(El)

sin(ϕk)

)
. (1)

Therefore, for each transmitting satellite in view, the GNSS
receiver collects multiple band-limited signal sl(t), time-
delayed and attenuated by the reflections:

x(t) =

L∑
l=1

xl(t) + wx(t), (2)

where L is the number of satellites seen, wx(t) is an additive
zero-mean complex Gaussian noise and

xl(t) = βlsl(t− τl)

+ βl

K∑
k=1

αksl

(
t− τl −

∆d(ϕk, El(t))

c

)
.

(3)

A standard GNSS receiver takes the signal x(t) and cross-
correlates it with a local replica for an integration time TI

in order to estimate the time-delay τl. Assuming that the
excess path length ∆d(ϕ,El(t)) is very small compared to the
width of the auto-correlation function resolution, the complex
amplitude of the cross-correlation for satellite l can be stacked
in a vector as follows:

yl(nTI) = βl

(
1 +

K∑
k=1

αke
−j 2π

λ ∆d(ϕk,El(nTI))

)
+ w(nTI),

(4)
with n ∈ (1, N), N is the number of post-correlation obser-
vations, βl the amplitude of the direct signal and w(nTI) is
an additive zero-mean complex Gaussian noise with variance
σ2
n.

Equation (4) can be written under a linear matrix expression
as follows:

yl = βlMlα+w, (5)

where, for n ∈ (1, N), yl = (. . . , yl(nTI), . . .)
T , w =

(. . . , w(nTI), . . .)
T , Ml = [1N ,ml(ϕ1), . . . ,ml(ϕK)] with

ml(ϕk) = (. . . , exp(−j 2π
λ ∆d(ϕk, El(nTI)), . . .)

T and 1N is
an N -element column of ones, and α = (1, α1, . . . , αK)T

being the ground reflection mapping to be estimated.

B. Discussion about the resolution

In equation (5), the matrix Ml is built as a function of the
time for the rows and of the local elevation ϕk for the columns.
In order to simplify the problem, it is of interest to mesh the
reflecting surface in terms of ϕk so that the columns ml(ϕk)
of Ml are orthogonal with one another, that is, for k and k′

both in (1,K)

ml(ϕk)
Hml(ϕk′) = Nδk,k′ (6)

It is shown in Appendix B that the condition in equation (6)
leads to the following rule to define ϕk:

δϕ ≈ λ sin(ϕ)2

h∆cos(El)
. (7)

where δϕ is the interval between ϕk and ϕk+1 and
∆cos(El) = cos(El(NTI))− cos(El(TI)).

Alternately, instead of meshing following the local receiver
elevation ϕk, one can mesh following the distance to the
receiver yk = h

tan(ϕk)
. Therefore, the range resolution, namely

δy is shown to be:

δy ≈ λ

∆cos(El)
. (8)

Unlike the Fresnel zone mode, this result suggests that the
ground resolution one can get i) does not depend on the
receiver height h nor on the considered ground position yk and
ii) is reduced to the wavelength number λ when the observed
elevations El(t) vary from the horizon to the zenith. Hence a
simple regularly meshed wavelength-apart range grid can be
used.

In the following, the rule (8) will be adopted to build Ml.
In this case, MH

l Ml ≈ NIK+1 where IK+1 is the K+1-by-
K + 1 identity matrix.

III. GROUND MAPPING

In order to estimate the ground reflection coefficients vector
α in equation (5), the EXIP introduced in [12] is used. This
technique consists of i) reparameterization of the current for-
mulation in order to get a simpler solution and ii) refinement
of this solution using a weighted least squares (WLS).



A. Reparameterization

Let one consider the following reparameterization of the
problem at hand:

γl = βlα, (9)

then the problem is simply, for l ∈ (1, L),

yl = Mlγl + n. (10)

Under the assumption of white Gaussian noise for n, the ML is
shown to be the solution of the following least square problem:

γ̂l = argminLl(γl), (11)

where Ll(γl) = ||yl − Mlγl||2. The exact solution of this
linear problem is shown to be:

γ̂l =
(
MH

l Ml

)−1
MH

l yl. (12)

Thanks to the reparametrization, these L estimated vectors
were obtained by processing each satellite contribution sepa-
rately.

B. Refinement

Now, the last step of EXIP consists in extracting the
initial parameters, namely β̂ = (β̂1, . . . , β̂L)

T and α̂ from
the estimated γ̂l, using a matched WLS minimization. The
solution of this WLS procedure is shown to be asymptotically
equivalent to the direct ML estimation. This WLS problem is
written as

(β̂, α̂) = argmin

L∑
l=1

∥γ̂l − βlα∥2Ql
, (13)

where Ql =
∂2Ll

∂γl∂γ
H
l

= MH
l Ml. Here the L different norms

defined by Ql make it difficult to solve the WLS problem
but, using the appropriate grid defined at the end of Sec.
II, MH

l Ml ≈ NIK+1, the problem can be approximated as
follows:

(β̂, α̂) ≈ argmin

L∑
l=1

∥γ̂l − βlα∥2 (14)

≈ argminTr
[(

Γ−αβH
)H (

Γ−αβH
)]

, (15)

where Γ = [γ̂1, . . . , γ̂L] and Tr[·] is the trace operator. The
trace above can be expanded in several elements as

Tr
[(

Γ−αβH
)H (

Γ−αβH
)]

= Tr
[
ΓHΓ

]
−αHΓβ − βHΓHα+αHαβHβ.

(16)

In order to minimize (16), one can derive first with respect to
β and obtain

β̂ =
ΓHα̂

α̂Hα̂
, (17)

leading to the following maximization problem to get α̂:

α̂ = argmax
αHΓΓHα

αHα
, (18)

whose solution is shown to be the eigenvector of ΓΓH

associated with the largest eigenvalue, that satisfies α(1) = 1.

IV. NUMERICAL RESULTS

In order to illustrate the performance of the proposed
GNSS-IR mapping procedure, let one consider the following
scenario: suppose a receiver R set on a mast at h = 2 meters
above a flat ground. The ground is divided into three areas
with different reflection coefficients αk, k ∈ (1, 3) (see Table
I).

TABLE I
DEFINITION OF THE REFLECTING SURFACE COEFFICIENTS WITH THEIR

LOCATION AS A DISTANCE FROM THE RECEIVER.

α1 α2 α3

0m–18.5m 18.5m–25.5m 25.5m–50m
0.02 exp (j π/3) 0.05 0.02 exp (j 3π/4)

These surfaces could be seen, for instance, as a flat ground
with different water content (α1 and α3) on which there is an
object that reflects more than the ground (α2).

The simulation supposes the reception of three satellite
signals after correlation, sampled at 0.1Hz during 1.5 hours.
During this time, the three satellites are at the same azimuth
and their elevations vary monotonously. These variations are
depicted in Fig. 2.

Fig. 2. Satellites elevation during the simulated recording.

Based on these variations and following the discussion in
Sec. II-B, one can deduce the grid step to take in order
to ensure that MH

l Ml is well conditioned. The smallest
∆cos(E) is obtained with satellite 2 (∆cos(E) ≈ 0.178)
which lead to a grid step of 5.6λ. In the following the grid
step will be set at 6λ ≈ 1.2m.



For the rest of the simulation set-up, the amplitudes for each
satellite are set at β = [1500, 1200, 2000]T and the thermal
noise standard deviation at σn = 200.

Fig. 3 presents the results of the method described in Sec.
III.

Fig. 3. Estimated α̂ (blue) and true value (orange) as a function of the
distance to the receiver. (Top) is the estimated amplitude and (Bottom) is the
estimated phase.

In this figure, one can see the reflecting surface between
∼18m and ∼25m in the top figure. Besides, in the bottom
figure, the change in phase is also clearly visible.

V. CONCLUSION

In this work, a procedure to improve the state of the
art GNSS-IR mapping scheme is derived. This procedure is
based on an improved signal model that extends the standard
specular reflection model. Nevertheless, this more complicated
problem does not exhibit any simple closed-form solution.
To tackle this problem, the EXIP was used to derive an
asymptotically equivalent closed-form solution. This solution
is shown to outperform the state of the art procedure based on
the first Fresnel zone assumption. Nevertheless the mapping
algorithm is limited to a 1D assumption. Future work will
aim to extend this procedure to 2D mapping, considering real
GNSS data.

APPENDIX

A. Geometric Phase Computation
Based on Fig. 1, let one fix the coordinates of the transmitter

T (yT , H), the receiver R(0, h) and a point of the reflecting
surface P (yP , 0). The distance between each point can be
approximated as follows: |TP | ≈

√
y2T +H2 − h cos(E)

tan(ϕ) ,
|PR| = h

sin(ϕ) and |TR| ≈
√
y2T +H2−h sin(E). Therefore,

the difference between the reflected path from the poitn P ,
|TP |+ |PR|, and the direct path, |TR|, is written as:

∆d(ϕ,E) = |TP |+ |PR| − |TR| (19)

≈ h

(
sin(E) +

1− cos(ϕ) cos(E)

sin(ϕ)

)
. (20)

B. Resolution Computation

Let one consider the correlation between two consecutive
columns of Ml separated by an interval δϕ as defined in Fig.
4.
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h

Fig. 4. Variables definition for the resolution computation.

ml(ϕ)
Hml(ϕ+ δϕ) =

N∑
n=1

e−j 2π
λ (∆d(ϕ+δϕ,El,n)−∆d(ϕ,El,n)),

(21)
where El,n = El(nTI). Note that for small δϕ:

∆d(ϕ+ δϕ,E) = h

(
sin(E) +

1− cos(ϕ+ δϕ) cos(E)

sin(ϕ+ δϕ)

)
(22)

≈ ∆d(ϕ+ δϕ,E) + h
cos(E)− cos(ϕ)

sin(ϕ)2
δϕ. (23)

Consequently, equation (21) reduces to:

ml(ϕ)
Hml(ϕ+ δϕ) ≈

N∑
n=1

e
−j 2πhδϕ

λ

cos(El,n)−cos(ϕ)

sin(ϕ)2 . (24)

The idea is to find δϕ so that the correlation is null. In
other words, assuming that the evolution of the elevation is
monotonous, find δϕ so that between the beginning (n = 1)
and the end (n = N ), the phase in the exponential has turned
one period:

hδϕ

λ

cos(El,N )− cos(ϕ)

sin(ϕ)2
=

hδϕ

λ

cos(El,1)− cos(ϕ)

sin(ϕ)2
+ 1

(25)

⇔ δϕ =
λ sin(ϕ)2

h∆cos(El)
. (26)

where ∆cos(El) = cos(El,N )− cos(El,1).
Based on Fig. 4, one can obtain the corresponding interval

in terms of distance from the receiver δy:

δy =
h

tan(ϕ)
− h

tan(ϕ+ δϕ)
(27)

≈ h

sin(ϕ)2
δϕ =

λ

∆cos(E)
. (28)
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