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Abstract—Multipath is one of the most challenging propagation
conditions affecting Global Navigation Satellite Systems (GNSS),
which must be mitigated in order to obtain reliable navigation
information. In any case, the random multipath nature makes it
difficult to anticipate and overcome. Therefore, for legacy GNSS
signal performance assessment, modern GNSS signal design and
future GNSS-based applications, robustness to multipath is a
fundamental criterion. Different multipath metrics exist in the
literature, such as the multipath error envelope, usually leading
to analyses only valid for a dedicated receiver/signal combination
and only providing information on the bias. This paper presents
a general criterion to characterize the multipath robustness of a
generic band-limited signal (e.g., GNSS or radar), considering
the joint delay-Doppler and phase estimation. This criterion
is based on the Cramér-Rao bound, which makes it universal,
regardless the receiver architecture and the signal under analysis,
and provides information on the actual achievable performance
in terms of estimated time-delay (i.e., pseudo-range) and Doppler
frequency variances.

Index Terms—GNSS, multipath, delay/Doppler and phase esti-
mation, Cramér-Rao bound, signal analysis, maximum likelihood
estimation.

I. INTRODUCTION

THE use of Global Navigation Satellite Systems (GNSS)
signals spans over a plethora of applications, from its

original navigation purposes [1], [2], to precise time syn-
chronization, remote sensing of the ionosphere for earthquake
forecasting, reflectometry (GNSS-R) [3] or radio occultation,
to name a few. Therefore, there exists a clear interest to have
meaningful tools for the correct characterization of legacy
GNSS signals, but also for the design of new signals for these
purposes or modern applications to come. There are different
signal design and analysis performance criteria depending on
the final application at hand, e.g., positioning accuracy, anti-
jamming capabilities, fast signal re-acquisition or resilience
to multipath. The latter still remains an open issue impacting
several applications, indeed being the limiting factor in several
scenarios due to the environment specific nature of such harsh
propagation conditions. For instance, i) multipath is one of the
main propagation challenges impairing navigation capabilities
in urban environments, ii) diffuse multipath is a fundamental
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problem in near indoor conditions, which is a challenge for
precise time synchronization at the core of next generation 5G
small cells, or iii) it may have a clear impact in ground-based
or low altitude airborne GNSS-R [4], [5], where depending
on the system geometry the direct signal may leak into the
antenna dedicated to the reflected signal [6], [7], directly
degrading the final GNSS-R product. In any case, to assess the
impact of possible multipath conditions into the final system
performance, accurate metrics are required.

From previous GNSS signal design contributions [8]–[11] it
is clear that the de facto metric used to characterize multipath
is the so-called multipath error envelope (MPEE) [12]–[14].
The MPEE estimates the multipath-induced error, considering
a simple two-ray model and a specific receiver architecture, as
a function of the geometrical propagation delay. It is evaluated
by taking the bias on the line-of-sight (LOS) signal delay of
a given estimator in a noise-free environment.

This metric has been widely applied to any multipath
mitigation method that were developed ever since. These
methods can be divided into two main categories: i) correlator-
based algorithms such as Pulse Aperture Correlator (PAC)
[15], Vision Correlator (VC) [16] or High Resolution Cor-
relator (HRC) [17] where the idea is to account for the
multipath by adding a small number of correlators and by
evaluating how the multipath distorts the correlation function;
and ii) more sophisticated algorithms that are estimating the
parameters of the multipath such as the Multipath Mitigation
Technique (MMT) [18], the Multipath Estimating Delay Lock
Loop (MEDLL) [19], [20], Space-Alternating Generalized
Expectation-Maximization (SAGE) [21] or, more recently, the
enhanced Coupled Amplitude Delay Lock Loops (CADLL)
[22], [23]. With MPEE it is then possible to compare these
algorithms with each other and with different GNSS signals
such as in [24], [25] where the size of the MPEE and the
moment it reduces to zero when the path separation gets larger
tell the potential user how well the studied algorithm performs.

In this work, a fundamentally different and more general
approach to multipath error characterization is proposed. A
metric to evaluate the robustness to multipath of any band-
limited signal candidate (e.g., GNSS or radar signals) is
derived by resorting to the Cramér-Rao bound (CRB). Indeed,
the ratio between the single source delay-Doppler CRB [26]
and the corresponding dual source delay-Doppler CRB [27],
considering a generic band-limited signal, provides the exact
loss in delay and Doppler estimation capabilities, which in
turn naturally translates to the final position estimates. One
of the key advantages of this closed-form metric is that it
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only depends on the baseband signal samples, and therefore
does not require to assume any specific receiver architecture,
thus providing a general multipath error performance limit.
Additional advantages can be listed as follows, this ratio is
valid for any signal-to-noise ratio (SNR) level and does not
depend on the amplitude of the multipath, as it is shown in the
derivation of the closed-form. Representative GNSS signals
are compared in terms of the proposed metric to support the
discussion.

The article is organized as follows: Section II presents
the existing MPEE, a simple alternative and their limits.
Section III provides the theoretical background needed for the
metric, which is derived in Section IV. Section V presents
representative results and the corresponding discussion. A
conclusion on this work is drawn in Section VI.

II. MULTIPATH ERROR ENVELOPE

The effect of multipath on the receiver performance is a
complex problem that has been addressed from several per-
spectives [12], [28]. The first criterion to deal with multipath
is the multipath model itself. A simple approach, widely used
for signal design, is the specular multipath model that assumes
a single multipath impinging on the receiver antenna and
distorting the line-of-sight (LOS) signal of interest. This model
considers a single specular reflection of the LOS signal. For
a given multipath-to-direct ratio (MDR), one can study the
impact of the non-line-of-sight (NLOS) signal on the LOS
signal delay estimation. This study usually does not take into
account the noise (i.e., SNR tends towards infinity). A typical
output of the specular multipath model is the so-called MPEE
that represents the worst case impact of the NLOS over the
LOS signal. These worst cases are obtained when the NLOS
is in-phase (relative phase Δq = 0) and out-of-phase (Δq = c).
It is defined as follows [12, (9.65)]:(

maxΔq (4 (d1/d0,Δg,Δq)) ,minΔq (4 (d1/d0,Δg,Δq))
)
(1)

where 4(·) is the induced bias on the estimation of the LOS
delay, d1/d0 is the MDR, Δg is the excess delay of the
multipath with respect to (w.r.t.) the LOS. Even though such
a model is not realistic, it quickly provides an idea of an
estimator behavior for a given signal in presence of multipath,
and is widely used [13], [14], [24]. The MPEE output is the
error (in meters) on the LOS pseudo-range estimation induced
by the NLOS w.r.t. a given excess delay, often converted into
path separation. From a statistical point of view, MPEE can
be seen as the bias envelope of the misspecified estimator
considered. Fig. 1 and Fig. 2 show the MPEE for GPS L1
C/A and Galileo E1B signals with the MMT estimator, which
is an implementation of the dual source maximum likelihood
estimator (MLE) [18] and the MEDLL estimator [19], [20]
which is also known as CLEAN-RELAX estimator.

From these two figures, one can first note that for the
MMT estimator, the MPEE is a flat zero-valued line. Indeed,
when there is no noise, the dual source maximum likelihood
estimator (2S-MLE) is unbiased and, consequently, MPEE will
not provide any information. Concerning the MEDLL, one can
see that the MPEE reaches zero for path separation greater than

Fig. 1. MPEE applied to MEDLL and MMT estimators for GPS L1 C/A
signal. Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration
time )� = 1ms.

Fig. 2. MPEE applied to MEDLL and MMT estimators for Galileo E1B
signal. Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration
time )� = 4ms.

140m for GPS L1 C/A and 40m for Galileo E1B. After these
values, the estimator can be said unbiased, but there is no way
to say whether its variance in a noisy environment will reach
a lower bound or not.

An alternative to the often too simplistic MPEE can be
obtained using the Root Mean Square error (RMSE) output
of a considered estimator as it is used in [29]. The multipath
impact with a random relative phase uniformly distributed in
(0, 2c) is studied in [18], where the result is linked to the
CRB reached by either a MLE or minimum mean square error
(MMSE) estimator [30]. In this case, the noise is taken into
account by setting a SNR. In Fig. 3 and Fig. 4, the RMSE
for the estimation of the LOS delay is plotted as a function
of the path separation. These figures were obtained with 1000
Monte Carlo simulations, when the LOS and the multipath are
in-phase. The SNR, defined at the output of the matched filter
is defined as follows

SNRout =
d2

0s� s
f2
=

= (�/#0) )� (2)

where d0 is the amplitude of the LOS signal, f2
= is the
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variance of an additive white gaussian noise, the baseband
signal samples are

s =
(
. . . B(=)B) . . .

))
#1≤=≤#2

, (3)

�/#0 is the carrier-to-noise power density ratio and )� is the
coherent integration time, )B being the sampling period.

Fig. 3. RMSE of the MEDLL and MMT estimators for GPS L1 C/A signal.
Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration time )� =
1ms, SNRout = 31dB.

Fig. 4. RMSE of the MEDLL and MMT estimators for Galileo E1B signal.
Front-end filter bandwidth set to 12 MHz, MDR = 0.5, integration time )� =
4ms, SNRout = 34dB.

Even though one can find similarities between the MPEE
and the RMSE, they are very different: the former provides
information on the bias of an estimator and the latter provides
information on the bias and the variance. Besides, the RMSE
adds extra information: for instance, in Fig. 3, the RMSE
of both MMT and MEDLL seem lower bounded at 1m and
present a variation at around 300m, which corresponds to 1
C/A chip. That bound is reached at 40m for the MMT and
100 for the MEDLL. In Fig. 4, there is also a lower bound at
about 30cm of RMSE and both MMT and MEDLL reach it
at a path separation of 40m. Since these bounds are reached
when the estimators are unbiased, they might be related to the
CRB that characterize efficient estimators.

These two last figures present a strong interest as they
provide information where the MPEE does not. However they
lack of generality: the noise level must be fixed, several of
Monte Carlo simulations need to be run for each point and
one cannot easily tell how this RMSE varies when the relative
phase and the relative amplitude vary.

In short, MPEE is characterizing the bias induced by a
multipath to an estimator/signal set. It is useful a tool to
compare different receiver architectures for the same signal, or
different signals for the same architecture, but does not provide
information anymore when the estimator is unbiased. The
RMSE approach in [18] is fundamentally different: using an
unbiased estimator, like the MLE in the asymptotic region (i.e.,
at high SNR where it is efficient [31]), the multipath impact
is linked to the global achievable estimation accuracy. This
does not depend on the architecture anymore and only relies
on the signal structure, but as it is based on the performance
of a specific estimator, the results can only be obtained after
exhaustive Monte Carlo analysis. If one looks at the following
definition

(RMSE)2 = variance︸   ︷︷   ︸
CRB

+ (bias)︸︷︷︸
MPEE

2, (4)

it is then clear that a relevant complementary tool to MPEE
is necessarily based on the CRB.

In this article, a generalized approach based on the delay-
Doppler CRB is proposed. Where widely used MPEE, based
on a sub-optimal single source criterion, studies the intrinsic
limits of a given architecture, only providing information on
the bias, the CRB approach, based on a dual source criterion
aims at studying the intrinsic limits of a given signal. Ex-
ploiting these bounds provides a meaningful way to complete
and simplify the work in [18] because it does not depend on
a specific estimator and provides a general multipath error
performance.

III. SIGNAL MODEL AND INSIGHTS ON THE CRB

A. Signal Model

Let a transmitter T and a receiver R have uniform linear
motions such that the positions can be described as p) (C) =
p) +v) C and p' (C) = p' +v'C, where p and v are the position
and velocity vectors, respectively. Under such conditions, the
distance between T and R at instant C can be approximated by
a first order distance-velocity model:

‖p) ' (C)‖ , ‖p' (C) − p) (C − g̃(C))‖ = 2g̃(C) ≈ 3 + EC,

g̃(C) ≈ g + 1C, g = 3

2
, 1 =

E

2
, (5)

where 3 is the T-to-R absolute distance when C = 0, E is the T-
to-R radial velocity, g is the time-delay due to the propagation
path, (1−1) is the dilatation induced by the Doppler effect, and
2 is the speed of light in a vacuum. A band-limited signal B(C),
with bandwidth �, is transmitted by T over a carrier frequency
52 (_2 = 2/ 52). Notice that this signal model encompasses
any GNSS signal. Using (5), the dual source complex analytic
signal at the output of the receiver’s antenna is:
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G' (C) = 3' (C; (0, d0, q',0) + 3' (C; (1, d1, q',1) + F' (C), (6)
3' (C; (8 , d8 , q',8) =

d84
9 q',8 B((1 − 18) (C − g8))4 9l2 (1−18)C4− 9l2 g8 , (7)

where F' (C) is a zero-mean white complex circular Gaussian
noise, l2 = 2c 52 , and for 8 ∈ {0, 1}, ()

8
= [g8 , 18], and d8

and q',8 are the amplitude (real number strictly positive) and
phase of the complex coefficients induced by the propagation
characteristics (fading, reflection, etc.), the polarization mis-
matches and the antenna gains. In this study, since a single
specular reflection is considered, signal 0 will refer to the
LOS signal where signal 1 will refer to the single multipath,
also noted NLOS. Under the narrowband signal hypothesis,
the Doppler effect on the band-limited baseband signal B(C)
is usually neglected so that: B((1 − 1) (C − g)) ≈ B(C − g) [32,
Ch.9]. Therefore, the baseband output of the receiver’s Hilbert
filter containing a direct signal and a single specular reflection
can be approximated by

G(C) , G' (C)4− 9l2 C = 3 (C; )0) + 3 (C; )1) + F(C) , (8)

3 (C; ) 8) , d84 9 q80(C; (i) , (9)

0(C; (i) , B(C − g8)4− 9l218 (C−g8) , (10)

where for 8 ∈ {0, 1}, ))8 = [()8 , d8 , q8], q8 = q',8−l2 (1+18)g8 .
If we now consider the acquisition of # = #2−#1+1 samples
at a sampling frequency �B = 1/)B , set equal to the front-end
bandwidth of the receiver �', the discrete signal model yields
to the following dual source conditional signal model (CSM),

x = A((0, (1)" + w, w ∼ CN(0, f2
=I# ) , (11)

with, for = ∈ [#1, #2],

x) = (. . . , G(=)B), . . . ) ,
A((0, (1) =

[
a((0), a((1)

]
,

a) ((8) =
(
. . . , B(=)B − g8)4− 9l218 (=)B−g8) , . . .

)
,

") =
(
d04

9 q0 , d14
9 q1

)
,

w) = (. . . , F(=)B), . . . ) .

B. Insights and Extension of the CRB for the Reception of a
Delayed, Dilated and Reflected Signal

The parameters to be estimated are gathered in the following
vector: &) = [f2

= , (
)
0 , (

)
1 , d0, q0, d1, q1]. From (11), one can

write x ∼ CN
(
A((0, (1)", f2

=I#
)

and the probability density
function (pdf) is expressed as,

?(x, &) = 1(
cf2

=

)# 4− 1
f2
=

‖x−A((0 ,(1)" ‖2
. (12)

The corresponding CRB for the estimation of & is defined as
the inverse of the Fisher Information Matrix (FIM) [33],

CRB& |& = F−1
& |& (&), F& |& (&) = −�

[
m2 ln ?(x, &)
m&m&)

]
. (13)

From [34, (4.68)], one can find the expression of the CRB
for the estimation of the parameters of interest gathered in

the concatenated vector ()2 = [()0 , (
)
1 ] based on a single

observation of the signal:

CRB−1
(2 |&
(&) = 2

f2
=

Re
{
�

(
(2

)
�

(
R)" ⊗

[
1 1
1 1

] )}
, (14)

R" = ""� =

[
d2

0 d0d14
− 9 (q1−q0)

d0d14
9 (q1−q0) d2

1

]
, (15)

�
(
(2

)
=


ma� ((0)
m(0

ma� ((1)
m(1

 P⊥A((2)


ma� ((0)
m(0

ma� ((1)
m(1


�

, (16)

where PA = I − P⊥A = A
(
A�A

)−1 A� is the orthogonal
projector onto the subspace defined by the set of the column
vectors of matrix A, � denotes the Hadamard product and ⊗
denotes the Kronecker product.

If one notes Γ = |Γ|4 9 qΓ such that d14
9 q1 = Γd04

9 q0 , the
CRB defined in (14) can be further developed and written as:

CRB−1
(2 |&
(&) =

2d2
0

f2
=

Re
{[

�1,1 Γ∗��
2,1

Γ�2,1 |Γ|2�2,2

]}
. (17)

Proof. see Appendix A for details on the derivation of sub-
matrices �8, 9 , 8, 9 = {1, 2}. �

Then, using the block matrix inversion lemma (53) on (17),
the inverse of CRB(0 |& can be expressed as

CRB−1
(0 |&
(&) =

2d2
0

f2
=

(AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ) ,
(18)

where, with superscript ' and � standing for real and imagi-
nary parts, respectively,

AΦ = �'
1,1, (19)

BΦ =
1
2

(
�'

2,1

(
�'

2,2

)−1
�'

2,1 +�
�
2,1

(
�'

2,2

)−1
��

2,1

)
, (20)

CΦ =
1
2

(
�'

2,1

(
�'

2,2

)−1
�'

2,1 −�
�
2,1

(
�'

2,2

)−1
��

2,1

)
, (21)

DΦ =
1
2

(
�'

2,1

(
�'

2,2

)−1
��

2,1 +�
�
2,1

(
�'

2,2

)−1
�'

2,1

)
. (22)

Proof. see Appendix B. �

Note that in (18), the CRB does not depend on |Γ|. This
means that in the asymptotic region of operation of the 2S-
MLE, the estimation of both the time delay and the Doppler
frequency of the LOS signal is not affected by the relative
amplitude of the NLOS but only by its relative delay, Doppler
and phase.

Equation (18) being a two-by-two matrix, it is easy to
evaluate its inverse and then extract a closed-form of CRBg0 |& :

CRBg0 |& (&)

=
f2
=

2d2
0

[AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ]2,2
det (AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ)

(23)

where det(·) is the determinant of the matrix in argument.
Similarly, a closed-form expression of the CRB for the estima-
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tion of the LOS Doppler parameter 10 can be easily obtained
by taking the other diagonal term of the inverse matrix:

CRB10 |& (&)

=
f2
=

2d2
0

[AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ]1,1
det (AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ)

(24)

As a side note, the derived CRB presented in (23) and (24)
are just alternative formulations of the CRB that were already
derived in [27].

IV. A CRITERION BASED ON CRAMÉR-RAO BOUNDS:
CLEAN-TO-COMPOSITE BOUND RATIO

A. Definition for the time-delay
The case without signal reflection is equivalent to a well

known standard single source scenario. The corresponding
closed-form CRB was derived in [26]. The resulting CRBs
are recalled here:

CRBg0 |)0 ,f
2
=
=
f2
=

2d2
0

[
A−1
Φ |(1=0

]
1,1
. (25)

where AΦ |(1=0 is the matrix AΦ defined in (19) where all
the NLOS components are set to zero: (1 = 0. This way the
interference terms are eliminated and the result is exactly the
closed-form bound from [26, (17a)].

Then, by simply dividing the CRB in a single source context
(25) by the corresponding CRB in a dual source source context
(23), a generalized closed-form formulation of a Clean-to-
Composite Bound Ratio (CCBR) for the time-delay estimation
is obtained, which is expressed with the baseband signal
samples (i.e., valid for any band-limited signal):

CCBRg (Δg, 10, 11, qΓ) ,
CRBg0 |)0 ,f

2
=

CRBg0 |&

=

[
A−1
�

]
1,1 det (AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ)
[AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ]2,2

(26)

where the dependency on Δg = g1 − g0 was shown in [27].
First, notice that the CCBRg does not depend on the SNR

of the LOS and the NLOS. Besides, as previously noticed, this
ratio does not depend on the relative amplitude of the reflected
signal either but it depends on the relative phase between the
LOS and the NLOS signals. Actually, the CCBRg is c-periodic
w.r.t. qΓ which reduces its study to the interval (0, c) as shown
in the next section.

B. Statistics of the Clean-to-Composite Bound Ratio
The c-periodicity of the CCBRg can be used to easily obtain

the maximum and minimum values for each scenario defined
by the set of parameters of interest (Δg, 10, 11). Indeed, by
implementing the different matrices required to compute this
ratio, it is quite direct to obtain these values. If one sets a pdf
to the relative phase qΓ, it is then also possible to obtain an
average value of the CCBRg . For instance, one can assume the
relative phase to be a random variable uniformly distributed
over (0, c), then the average can be numerically obtained as:

�qΓ {CCBRg} (Δg, 10, 11) =
1
c

∫ c

0
CCBRg (Δg, 10, 11, q)dq

(27)

C. Definition for the Doppler frequency

Similarly, it is possible to construct a CCBR1 that can be
defined as the ratio between the CRB for the estimation of the
LOS Doppler parameter 10 in a single source context,

CRB10 |)0 ,f
2
=
=
f2
=

2d2
0

[
A−1
Φ |(1=0

]
2,2
, (28)

and the corresponding CRB in a dual source context (24):

CCBR1 (Δg, 10, 11, qΓ) ,
CRB10 |)0 ,f

2
=

CRB10 |&

=

[
A−1
�

]
2,2 det (AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ)
[AΦ − BΦ − cos(2qΓ)CΦ + sin(2qΓ)DΦ]1,1

(29)

Again, this CCBR does not depend on the SNR nor the
relative amplitude. It is also c-periodic w.r.t. qΓ.

V. RESULTS AND DISCUSSIONS

A. Averaged CCBRg
The resulting CCBRg with respect to the path separation

starts from 0 when the LOS and NLOS signals are perfectly
superimposed, in this case both sources are extremely hard
to separate and estimating them both properly would imply
a very large variance. Then the CCBRg tends towards unity
when the path separation gets large, and it may present local
minima in its transition region. Considering a GPS L1 C/A
signal, averaged CCBRg results are presented in Fig. 5 for
different receivers’ RF front-ends. As defined in Section III,
the sampling frequency is assumed equal to the front-end
bandwidth: �' = 1 MHz denotes then a low cost receiver and
�' = 8 MHz corresponds to higher quality one. In this figure,
the relative phase is assumed uniformly distributed in (0, c)
and, the Doppler frequencies of both signals are arbitrarily set
to 0 Hz to obtain the following figures. One can see the effect
of the RF front-end bandwidth �': when it gets larger, the
main signal is less affected by the multipath. It is interesting
to see how the averaged CCBRg oscillates when the path
separation is below 300 meters (i.e., 1 L1 C/A chip), especially
for �' = 8 MHz, where a peak at about 300 meters suggests a
strong sensitivity to multipath of the C/A code for this specific
path separation. In other words, for Binary Phase Shift Keying
(BPSK(1)) modulations, the LOS signal time-delay estimation
is particularly affected when the reflected signal appears at
around 1 L1 C/A chip. A discussion regarding this behaviour
is proposed in Section V-E.

B. Min-Max Analysis: CCBRg Envelope

In Fig. 6 and Fig. 7, the GPS L1 C/A signal is compared
to a Galileo E1B signal at �' = 24 MHz. In these figures,
the envelope between the minimum and maximum values of
the CCBRg is displayed. These values can easily be obtained
numerically by evaluating the ratio for each value of relative
phase. A first interesting remark concerning this display is that
the min and max curves occasionally meet at specific path
separations, for which the CCBRg does not depend on the
relative phase. In Fig. 7, one can see that the Galileo signal
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Fig. 5. Averaged CCBRg for the GPS L1 C/A PRN 1 signal with �' =

1, 2, 4, 8 MHz, and qΓ uniformly distributed in (0, c) .

might oscillate more within the 300 meters but the CCBRg
remains above 0.9, while the C/A signal, Fig. 6, presents a
depression at around 300m which goes down to 0.75.

Fig. 6. CCBRg envelope for a GPS L1 C/A signal with �' = 24 MHz.

Fig. 8 and Fig. 9 are two other examples of CCBRg
envelopes for GPS L5-I and Galileo E5 signals when their
entire bandwidth is sampled. These figures focus on the first
50 meters of path separation since the corresponding CCBRg
are close to 1 for larger path separation. In Fig. 8, the CCBRg
can vary a lot in the range of path separation between 10
and 20 meters (CCBRg is in a 0.4 wide range), then for path
separation larger than 30 meters, the multipath does not affect
the estimation of the LOS time delay anymore (CCBRg larger
than 0.9. For the E5 signal, Fig. 9, the shape of the envelope
is less smooth, but overall thinner. For a path separation of
10 meters, it presents a large range of possible CCBRg values
(between 0.6 and 1) but then the CCBRg goes above 0.9 at
around 20 meters and flattens out. As a conclusive remark for
these two figures, the E5 signal is slightly more resilient than
the L5 signal when path separation increases since it is almost
not affected anymore above 20 meters.

Fig. 7. CCBRg envelope for a Galileo E1B signal with �' = 24 MHz.

Fig. 8. CCBRg envelope for a GPS L5-I signal with �' = 24 MHz.

Fig. 9. CCBRg envelope for a Galileo E5 signal with �' = 60 MHz.

C. Performance Considerations

From the results presented in Fig. 6 and Fig. 7, it is then
possible to obtain the average RMSE of a given scenario,
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assuming a uniformly distributed relative phase qΓ over (0, c).
The single source CRB in [26], recalled in (25), is typically
shown as a function of the output SNR, defined in (2). Then,
for a specific SNRout (i.e., a given receiver operation point), it
is simple to use the CCBRg to obtain an evaluation of the best
achievable accuracy for the time-delay estimation in presence
of a single multipath using (27), this is not a bound anymore
but it can provide an order of magnitude of the averaged
bound:

�qΓ
{
CRBg0 |&

}
=

CRBg0 |)0 ,f
2
=

�qΓ {CCBRg}
(30)

Note that the result will consequently be averaged over the
possible phase differences.

Fig. 10. Averaged CRBg0 |& in presence of a single multipath as an application
of the averaged CCBRg on GPS L1 C/A (continuous lines) and Galileo
E1B (dashed lines) signals, sampled at �' = 24 MHz for three different
representative SNRout.

Fig. 10 coherently completes the example proposed in [18,
Fig. 5], in which the bounds are replaced by a ML-based
estimator, and the results are obtained taking the RMSE
of several Monte Carlo simulations with random secondary
path relative phase. Three representative values of SNRout are
considered: SNRout = 15, 25, and 33 dB. Notice that the first
value, 15dB, corresponds to a nominal �/#0 = 45 dB-Hz
and )� = 1ms, the minimum integration time for a GPS L1
C/A signal. The second one, 25dB, under the same nominal
conditions, corresponds to a standard integration time )� =
10ms, and the last one, 33dB, is obtained for instance using
an extended integration around 64ms. Equivalently, as done
in high-sensitivity receivers, these values may correspond to
larger non-coherent integration times for lower �/#0 values.

It is worth pointing out that the results in Fig. 10 differ from
the work presented in [18] when the path separation gets very
small (less than 5 meters): where the averaged CRBg0 |& tends
to infinity here, it goes down to a smaller value in [18, Fig. 5].
This is due to the assumptions on the estimator. In [18], the
author presents the result of an MMSE estimator considering
amplitude of the LOS larger than the NLOS and the LOS
signal arriving prior to the NLOS. This estimator appears to be
biased. The CRB is a lower bound for any unbiased estimator.
If one considers the estimation of two signals very close in
time, the CCBRg tells that the variance of an unbiased dual

source estimator will tend to infinity. This was also pointed
out by the same author in [30, Sec. IV], or more recently in
[35, Sec. VI].

It is interesting to see how the peak at 300 meter observed
in Fig. 6 is reflected: at SNRout = 15 dB, a multipath with a
path separation around 300m would then induce an additional
20cm error compared to a slightly different path separation.
Such a behavior could be observed in Fig. 3. As expected, the
Galileo E1B signal performance is less affected than the C/A
signal one, given that the binary offset carrier modulation has
a narrower correlation function.

Fig. 11. (Top) Averaged CRBg0 |& in presence of a single multipath as
an application of the averaged CCBRg on GPS L1 C/A (continuous lines)
and Galileo E1B (dashed lines) signals, sampled at �' = 24 MHz for
three different representative SNRout. (Bottom) Corresponding MPEE when
applying the MEDLL.

Finally, in Fig. 11, the averaged CRBg0 |& resulting from
the CCBRg is compared to the information provided by the
MPEE in the case of two signals (GPS L1 C/A and GALILEO
E1B) when the MEDLL is applied. From these figures, it is
possible to see that, due to thermal noise, the best achievable
performance of an unbiased estimator may be larger than the
actual error predicted by the MPEE. Such a set of figure gives
an insight of the contributions of both the error induced by
the multipath thanks to the MPEE and the error induced by
thermal noise thanks to the CCBRg approach. For low SNRout
it is clear that the latter is more significant than the former.
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D. Regarding the Doppler parameter

In this section, an overview of the potential output of the
CCBR1 expressed in (29) is presented. Taking advantage of
the c-periodicity of the ratio, an averaged CCBR1 can be
obtained by assuming, for instance, a uniform distribution of
the relative phases over (0, c):

�qΓ {CCBR1} (Δg, 10, 11) =
1
c

∫ c

0
CCBR1 (Δg, 10, 11, q)dq

(31)
In Fig. 12, the averaged CCBR1 is presented for differ-

ent receivers’ RF front-end. One can remark that when �'
increases, the averaged CCBR1 tends to reach 1 for smaller
path separations but oscillations appear for �' = 4 MHz and
�' = 8 MHz that lead to make smaller �' more robust to
multipath that larger �'. As a concrete example, for path
separation between 140m and 250m, signals filtered at 2
MHz are less affected by the presence of a multipath for the
estimation of the Doppler frequency.

Fig. 12. Averaged CCBR1 for the GPS L1 C/A PRN 1 signal with �' =

1, 2, 4, 8 MHz, and qΓ uniformly distributed in (0, c) .

Regarding the min-max approach, Fig. 13 and Fig. 14
present the CCBR1 envelopes for GPS L1 C/A and Galileo
E1B. For both figures, it is worth pointing out that there is
a relative phase for which the presence of a multipath does
not affect the estimation performance of the LOS Doppler
frequency. This corresponds to the flat upper bound of the
envelopes. Considering GPS L1 C/A signal, the lower bound
CCBR1 is smooth and slowly increases up to 1 when the path
separation reaches about 300m (or 1 C/A chip). For Galileo
E1B signal, the upper bound CCBR1 slope is steeper but
oscillates before finally reaching 1 at about 250m of path sepa-
ration. These observations mean that when the path separation
is large enough the LOS Doppler frequency estimation is not
affected anymore by the multipath.

E. Cross-Check and Further Investigation

Through the different results provided by the CCBR, there
is one that cannot fail to surprise the reader, that is, the re-
markable behavior of the GPS L1 C/A CCBRg when the path

Fig. 13. CCBR1 envelope for a GPS L1 C/A signal with �' = 24 MHz.

Fig. 14. CCBR1 envelope for a Galileo E1B signal with �' = 24 MHz.

separation is close to 1 C/A chip, or 300m. As a mean to verify
this behavior, one can compare the analytical result provided
by the CCBRg expression with an implementation of the 2S-
MLE which is known to turn efficient when the SNR is large
enough [31]. Fig. 15, which presents the RMSE of the 2S-
MLE for a GPS L1 C/A signal with a RF front-end bandwidth
�' = 12 MHz, a multipath in-phase Δq = 0, with MDR= 0.5
and integrated for )� = 1ms, was obtained with 1000 Monte
Carlo runs. Here the peak is clearly visible with both analytical
and simulation approaches (which are completely independent
from one another). Such a methodology has been followed in
previous works [26], [27], [36] and leaves no doubt on the
exactness of the highlighted behavior.

Finally, since this behavior does not seem to be present
for modulations different than BPSK, it is worth looking up
at the potential impact of the pseudorandom noise (PRN)
sequence used in the GPS simulations. As a matter of fact,
it has been recently shown that, for GPS L1 C/A, depending
on which PRN is used, the achievable performance can vary
significantly [37], [38]. In particular, Gold PRN 7 and 8 are,
among others, identified to present the larger difference of
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Fig. 15. RMSE of the 2S-MLE (MMT) estimator for GPS L1 C/A signal
with corresponding dual source CRB.

performance. Thanks to the easy-to-handle dependency of the
CCBR on the baseband signal samples, it is easy to generate
the corresponding CCBRg for these two PRN codes. In Fig.
16, the averaged CCBRg for GPS L1 C/A PRN 7 and 8
are superimposed and the remarkable phenomenon at around
300m is present for both Gold sequences but the amplitude
of the depression varies. This extends the fact that the time-
delay estimation performance is indeed affected by the Gold
sequence choice, even in a dual source context. Moreover, the
depression observed at this path separation is present whatever
the PRN, which support the idea that it is a consequence
of the GPS L1 C/A waveform, namely the BPSK and not
a consequence of an unfortunate PRN sequence choice.

Fig. 16. Averaged CCBRg for the GPS L1 C/A signal PRN 7 and 8 with
�' = 24 MHz and qΓ uniformly distributed in (0, c) .

VI. CONCLUSION

In this contribution, a criterion for signal robustness to
multipath was presented. This criterion, based on a specular
multipath model, consists of a ratio between the CRB for
the time-delay or Doppler frequency estimation of a signal

without multipath and the CRB for the time-delay or Doppler
frequency estimation of the same signal distorted by a single
multipath. Under the assumption of a unique antenna, both
LOS and NLOS signals experience the same thermal noise. As
a consequence, this ratio does not depend on the noise level nor
the receiver architecture nor, as it is shown in this contribution,
the relative amplitude of the reflected path. This simplification
and the easy to handle dependency on the relative phase can
rapidly lead to quantitative results by fixing the scenario,
then avoiding unnecessary restrictive assumptions, the need
of a given receiver architecture, or exhaustive evaluations of
a given estimator. Using such CRB approach consequently
provides information on the best achievable accuracy under
multipath conditions in the mean square error sense, which
efficiently completes existing criterion, namely the MPEE, that
was only providing information on the bias of a given receiver
architecture and a given signal. The generality of the proposed
CCBR makes it a valuable GNSS signal design and analysis
tool. The main features of this metric can be wrapped up as
follow:

• it does not depend on any specific receiver architecture:
it is valid for any unbiased dual source estimator,

• it takes into account the Doppler effect,
• it is valid for any SNR,
• it does not depend on the relative amplitude of the NLOS

signal,
• it is easy to evaluate (closed-form expression),
• it is expressed w.r.t. the signal baseband samples, so it

takes into account the potential flaws of the pseudoran-
dom code such as the Gold code ones as it was noticed
in [38],

• it provides information on the best achievable accuracy
in the mean square error sense.

As a final note, the CCBR can also be used as a powerful
complementary tool to study the performance of suboptimal
estimators that are asymptotically efficient: the MPEE informs
the user when the estimator becomes unbiased and the CCBR
provides information on what the corresponding RMSE will
look like in this region, given the fact that the noise level
is large enough for the estimator to be efficient. The system
would then be statistically characterized with its bias and its
lower bound variance.

APPENDIX A

From (16), and omitting the dependency on (2 for the sake
of clarity, the matrix � is defined using the projector PA:

� =


ma� ((0)
m(0

ma� ((1)
m(1

 P⊥A


ma� ((0)
m(0

ma� ((1)
m(1


�

(32)

=


ma� ((0)
m(0

ma� ((1)
m(1



ma� ((0)
m(0

ma� ((1)
m(1


�

︸                              ︷︷                              ︸
Appendix A-A
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−

ma� ((0)
m(0

ma� ((1)
m(1

 A

Appendix A-B︷     ︸︸     ︷(
A�A

)−1
A�


ma� ((0)
m(0

ma� ((1)
m(1


�

︸                                                       ︷︷                                                       ︸
Appendix A-C

. (33)

A. First Term of (33)

Similarly to the approach in [27], the derivative of 0(C; (8)
w.r.t. the parameters of interest is

m0(C; (8)
m(8

= Q8D(C − g8)4− 9l218 (C−g8) (34)

where

Q8 =

[
9l218 0 −1

0 − 9l2 0

]
,D(C) = ©«

B(C)
CB(C)
B (1) (C)

ª®¬ , (35)

with B (1) (C) = dB (C)
dC . Therefore, when C = =)B , one can write

ma� ((0)
m(0

ma� ((1)
m(1

 = Q∗
[
. . . , D(=)B; (2)e(=)B; (2), . . .

]∗
#1≤=≤#2

(36)
where

Q =

[
Q0 0
0 Q1

]
,D(C; (2) =

[
D(C − g0) 0

0 D(C − g1)

]
(37)

and e(C; (2) =
(
4− 9l210 (C−g0)

4− 9l211 (C−g1)

)
. From this result one can

write that
ma� ((0)
m(0

ma� ((1)
m(1



ma� ((0)
m(0

ma� ((1)
m(1


�

=

(
Q

(
#2∑
==#1

D(=)B; (2)
(
I2 + �) (=)B; (2)

)
D(=)B; (2)�

)
Q�

)∗
(38)

with �) induced by the difference of delay, Doppler shifts
between the two signals,

�) (=)B; (2) , e(=)B; (2)e(=)B; (2)� − I2. (39)

Then, taking the limit of (38) when #1 and #2 are very large,
it leads to an integral form

lim
(#1 ,#2)→(−∞,+∞)


ma� ((0)
m(0

ma� ((1)
m(1



ma� ((0)
m(0

ma� ((1)
m(1


�

= �B

(
Q

[
(·)1,1 (·)1,2
(·)2,1 (·)2,2

]
Q�

)∗ (40)

where (·)1,1 = (·)2,2 = W is derived and studied in the single
source case in [26], [36] and (·)2,1 = (·)�1,2 = WΔ is derived in
the dual source case in [27]. For the computation of WΔ no
phase difference in the multiplicative complex exponential [27,

(14)] is considered since it appears in the R" matrix defined
in (15). Their forms are recalled hereafter,

W =


F1 F2 F∗3
F2 ,2,2 F∗4
F3 F4 ,3,3

 , (41)

WΔ =


,Δ

1,1 ,Δ
1,2 ,Δ

1,3
,Δ

2,1 ,Δ
2,2 ,Δ

2,3
,Δ

3,1 ,Δ
3,2 ,Δ

3,3

 4 9l211Δg , (42)

and for the computation of the different terms using the
baseband signal samples, the reader may refer to [27].

B. Inverse in the Second Term of (33)

In a similar way, it is possible to evaluate the matrix A�A
as follows:

A�A =

[
0(C; (0)� 0(C; (0) 0(C; (0)� 0(C; (1)
0(C; (1)� 0(C; (0) 0(C; (1)� 0(C; (1)

]
, (43)

and, when C = =)B and both #1 and #2 are very large, it leads
to an integral form:

lim
(#1 ,#2)→(−∞,+∞)

A�A (44)

= �B

[
F1

(
,Δ

1,14
9l211Δg

)∗
,Δ

1,14
9l211Δg F1

]∗
,

(45)

and then,

lim
(#1 ,#2)→(−∞,+∞)

(
A�A

)−1

=
F1

�B (F2
1 − |,

Δ
1,1 |2)

 1 −
(
, Δ

1,14
9l211Δg

)∗
F1

−,
Δ

1,14
9l211Δg

F1
1


∗

.

(46)

C. Second Term of (33)

Again, from (36),one can write that
ma� ((0)
m(0

ma� ((1)
m(1

 A =

(
Q

(
#2∑
==#1

D(=)B; (2)
(
I2 + �) (=)B; (2)

)
×

[
B(=)B − g0)∗ 0

0 B(=)B − g1)∗
] ))∗

.

(47)

Then, when #1 and #2 are very large, it leads to an integral
form

lim
(#1 ,#2)→(−∞,+∞)


ma� ((0)
m(0

ma� ((1)
m(1

 A = �B

(
Q

[
w

(
wΔ

1,.

)�
wΔ
.,1 w

])∗
(48)

where w is the first column of W recalled in (41), wΔ
.,1 is the

first column of WΔ recalled in (42) and wΔ
1,. is the first row
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of WΔ. Then, combining (48) with (46), the second term of
(33) can be written:

ma� ((0)
m(0

ma� ((1)
m(1

A
(
A�A

)−1
A�


ma� ((0)
m(0

ma� ((1)
m(1


�

=
�BF1

F2
1 − |,

Δ
1,1 |2

(
Q

[
w

(
wΔ

1,.

)�
wΔ
.,1 w

]

×
 1 −

(
, Δ

1,1

)∗
F1

4− 9l211Δg

−,
Δ

1,1
F1
4 9l211Δg 1


×

[
w�

(
wΔ
.,1

)�
wΔ

1,. w�

]
Q�

)∗
=

�BF1

F2
1 − |,

Δ
1,1 |2

(
Q

[
(·)1,1 (·)1,2
(·)2,1 (·)2,2

]
Q�

)∗
(49)

with

(·)1,1 = ww� +
(
wΔ

1,.

)�
wΔ

1,.

− 2Re

{
wwΔ

1,.

(
,Δ

1,1

F1
4 9l211Δg

)∗}
, (50)

(·)2,1 = (·)�1,2 = wwΔ
1,. + wΔ

.,1w�

− ww�
,Δ

1,1

F1
4 9l211Δg − wΔ

.,1wΔ
1,.

(
,Δ

1,1

F1
4 9l211Δg

)∗
,

(51)

(·)2,2 = ww� + wΔ
.,1

(
wΔ
.,1

)�
− 2Re

{
wΔ
.,1w�

(
,Δ

1,1

F1
4 9l211Δg

)∗}
. (52)

If one subtracts (49) to (38), the matrix � is obtained and �8, 9

with 8, 9 = {1, 2} are the corresponding submatrices when only
the terms (·)8, 9 are used in (38) and (49).

APPENDIX B
In (17), the real part of the diagonal elements are directly

the real part of the � matrix, denoted �'
1,1 and �'

2,2. On
the other hand, the real part of the non-diagonal elements are
affected by the complex number Γ:

Re
{
Γ�2,1

}
= Re

{
Γ∗��

2,1
}

= |Γ|
(
cos(qΓ)�'

2,1 − sin(qΓ)��
2,1

)
.

where �'
2,1 and ��

2,1 are the real and imaginary parts of
�2,1, respectively. Then, in order to obtain a closed-form of
CRB(0 |& (&), the block matrix inversion lemma is used:[

A1,1 A1,2
A2,1 A2,2

]−1
=

[
C−1

1 −A−1
1,1A1,2C−1

2
−C−1

2 A2,1A−1
1,1 C−1

2

]
C1 = A1,1 − A1,2A−1

2,2A2,1, (53)

C2 = A2,2 − A2,1A−1
1,1A1,2, (54)

From (53),

CRB−1
(0 |&
(&) =

2d2
0

f2
=

(
�'

1,1 − |Γ|
(
cos(qΓ)�'

2,1 − sin(qΓ)��
2,1

)
× 1
|Γ|2

(
�'

2,2

)−1
|Γ|

(
cos(qΓ)�'

2,1 − sin(qΓ)��
2,1

))
=

2d2
0

f2
=

(
�'

1,1 −
(
cos(qΓ)�'

2,1 − sin(qΓ)��
2,1

)
×

(
�'

2,2

)−1 (
cos(qΓ)�'

2,1 − sin(qΓ)��
2,1

))
.

Then, simply developing the expression and rearranging the
matrices in terms of cos(2qΓ) and sin(2qΓ), the wanted
expression (18) is obtained.
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