Aerospace Conference 2022 Multipath Estimating Techniques Performance Analysis

Corentin Lubeigt^{1,2}, Lorenzo Ortega³, Jordi Vilà-Valls², Laurent Lestarquit⁴ and Éric Chaumette²

> ¹TéSA Laboratory, Toulouse, France ²ISAE-SUPAERO, Toulouse, France ³IPSA, Toulouse, France ⁴CNES, Toulouse, France

> > March 8, 2022

SUPAERO

Outline

Context

Framework of the Study

Algorithms

Results

Conclusion

Outline

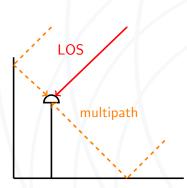
Context

Framework of the Study

Algorithms

Results

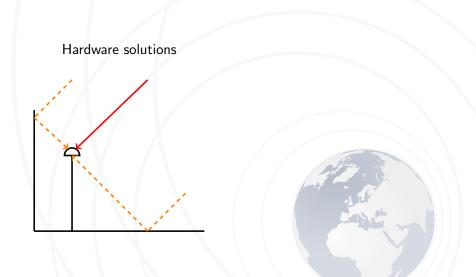
Conclusion

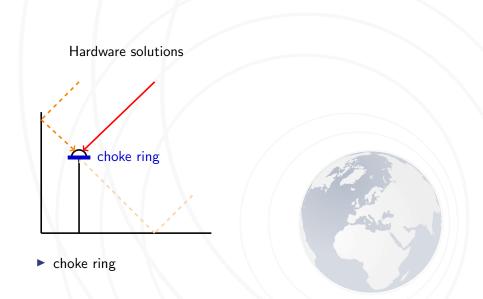

Design of GNSS architectures

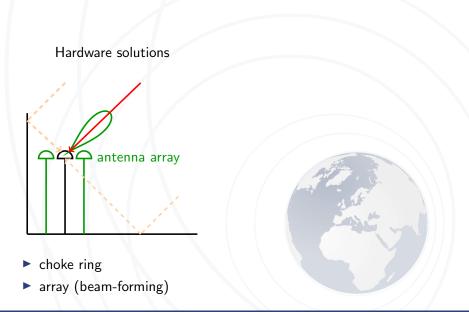
- Computational cost,
- Estimation accuracy,
- Robustness to harsh environment (multipath)
- etc.

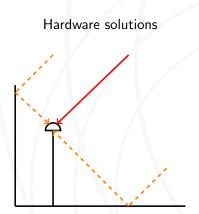
Design of GNSS architectures

- Computational cost,
- Estimation accuracy,
- Robustness to harsh environment (multipath)
- etc.

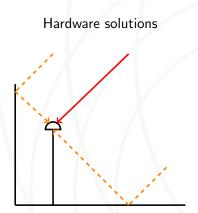

Multipath definition




Definition*: Multipath is the reception of multiple reflected or diffracted replicas of the desired signal, along with the direct path signal.


- degradation of the estimation (bias induced),
- mobile application: random and dynamic phenomenon.

*[1] Kaplan and Hegarty, "Understanding GPS/GNSS: Principle and Applications," 2017.



- choke ring
- array (beam-forming)

Software solutions (signal processing)

- based on the distortion of the ambiguity function,
- multipath estimating solutions.

- choke ring
- array (beam-forming)

Software solutions (signal processing)

- based on the distortion of the ambiguity function,
- multipath estimating solutions.

Architecture Performance Analysis

Multipath Error Envelope (MPEE)

- two-ray noise-free model
- bias on the estimation of the direct signal's delay
- does not allow to compare unbiased estimators performance with each other

Architecture Performance Analysis

Multipath Error Envelope (MPEE)

- two-ray noise-free model
- bias on the estimation of the direct signal's delay
- does not allow to compare unbiased estimators performance with each other
- Unbiased estimators: Mean Square Error (MSE)
 - two-ray noisy model (SNR)
 - variance of the estimated direct signal's delay
 - universal Cramér-Rao lower bound

Outline

Context

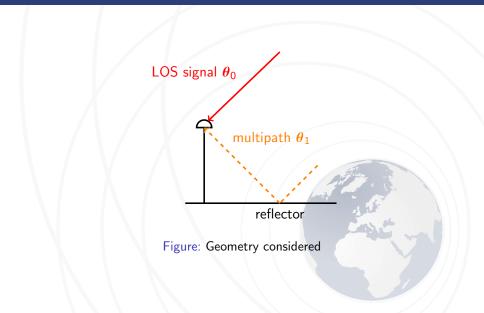
Framework of the Study

Algorithms

Results

Conclusion

Signal Model: Assumptions


Single multipath from a specular reflection:

$$x(t) = \rho_0 e^{j\phi_0} s(t - \tau_0) + \rho_1 e^{j\phi_1} s(t - \tau_1) + w(t)$$
 (1)

- White Gaussian noise: $w \sim \mathcal{N}(0, \sigma_n^2)$
- Deterministic formulation with the following unknown vector:

$$\boldsymbol{\epsilon}^{T} = [\boldsymbol{\sigma}_{n}^{2}, \underbrace{\boldsymbol{\tau}_{0}, \boldsymbol{\rho}_{0}, \boldsymbol{\phi}_{0}}_{\boldsymbol{\theta}_{0}^{T}}, \underbrace{\boldsymbol{\tau}_{1}, \boldsymbol{\rho}_{1}, \boldsymbol{\phi}_{1}}_{\boldsymbol{\theta}_{1}^{T}}]$$
(2)

Signal Model

MPEE: range of the bias induced by a multipath upon the estimated $\hat{\tau_0}$. For a given estimator, it can be defined as follows:

 $\{\max_{\Delta\phi} (\text{bias} (\text{MDR}, \Delta\tau, \Delta\phi)), \min_{\Delta\phi} (\text{bias} (\text{MDR}, \Delta\tau, \Delta\phi))\} (3)$

with

MDR = ρ_1/ρ_0 , the multipath-to-direct amplitudes ratio, $\Delta \tau = \tau_1 - \tau_0$, the multipath excess delay, $\Delta \phi = \phi_1 - \phi_0$, the relative phase.

MPEE: Example

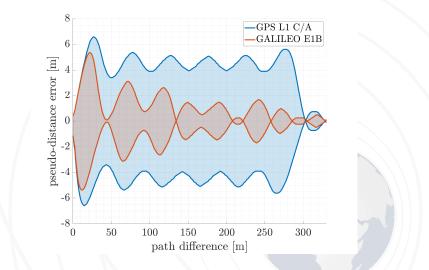


Figure: 1S-MLE MPEE for GPS L1 C/A and GALILEO E1B signals.

Cramér-Rao Bounds (CRB)

From previous work^{*}, the CRB for the estimation of ϵ is obtained by inverting the corresponding Fisher Information Matrix:

$$\mathbf{F}_{\boldsymbol{\epsilon}|\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) = \begin{bmatrix} F_{\sigma_{n}^{2}|\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{F}_{\theta_{0}|\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) & \mathbf{F}_{\theta_{0},\theta_{1}|\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) \\ \mathbf{0} & \mathbf{F}_{\theta_{1},\theta_{0}|\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) & \mathbf{F}_{\theta_{1}|\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) \end{bmatrix}$$
(4)

*[2] Lubeigt et al "Joint Delay-Doppler Estimation Performance in a Dual Source Context," 2020.

Outline

Context

Framework of the Study

Algorithms

Results

Conclusion

Maximum-likelihood-based methods:

- Multipath Estimating Delay Lock Loop (MEDLL or CLEAN-RELAX)*
- Multipath Mitigation Technique (MMT or 2S-MLE)
- Alternating Projection Estimator (APE)
- Correlator-based method:
 - Pulse Aperture Correlator (PAC)

*[3] Van Nee, "The Multipath Estimating Delay Lock Loop," 1992.
[4] Townsend et al, "Performance Evaluation of the Multipath Estimating Delay Lock Loop," 1995.

Maximum-likelihood-based methods:

- Multipath Estimating Delay Lock Loop (MEDLL or CLEAN-RELAX)
- Multipath Mitigation Technique (MMT or 2S-MLE)*
- Alternating Projection Estimator (APE)
- Correlator-based method:
 - Pulse Aperture Correlator (PAC)

*[5] Weill, "Multipath Mitigation Using Modernized GPS Signal: How Good Can It Get?" 2002.

Maximum-likelihood-based methods:

- Multipath Estimating Delay Lock Loop (MEDLL or CLEAN-RELAX)
- Multipath Mitigation Technique (MMT or 2S-MLE)
- Alternating Projection Estimator (APE)*
- Correlator-based method:
 - Pulse Aperture Correlator (PAC)

*[6] Ziskind and Wax, "Maximum Likelihood Localization of Multiple Sources by Alternating Projection," 1988.

Maximum-likelihood-based methods:

- Multipath Estimating Delay Lock Loop (MEDLL or CLEAN-RELAX)
- Multipath Mitigation Technique (MMT or 2S-MLE)
- Alternating Projection Estimator (APE)
- Correlator-based method:

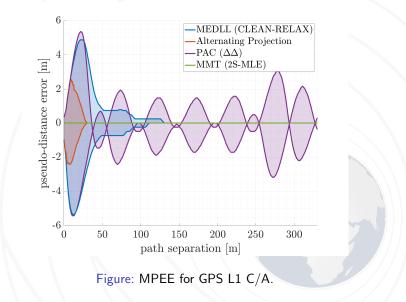
Pulse Aperture Correlator (PAC)*

*[7] Jones et al, "Theory and Performance of the Pulse Aperture Correlator," 2004.

Outline

Context

Framework of the Study


Algorithms

Results

Conclusion

MPEE

Aerospace Conference 2022, Big Sky, MT, USA

March 5 - March 12, 2022

RMSE w.r.t. the path separation

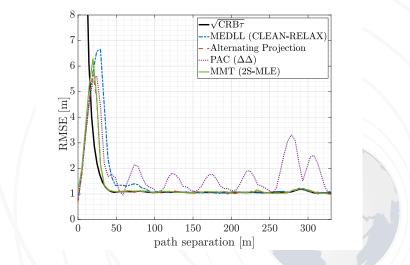


Figure: RMSE of $\hat{\tau}_0$ w.r.t. $c\Delta \tau$ for GPS L1 C/A and SNR_{out} = 31dB.

RMSE w.r.t. the SNR

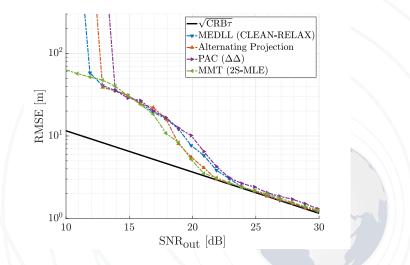


Figure: RMSE of $\hat{\tau_0}$ w.r.t. SNR_{out} for GPS L1 C/A and $c\Delta \tau = 150$ m.

Outline

Context

Framework of the Study

Algorithms

Results

Conclusion

Conclusion

MPEE approach:

- graphical tool, easy to read,
- information on the bias only,
- assumed a noise-free environment.

RMSE approach:

- information on the variance,
- can be compared to a theoretical lower bound,
- takes into account the noise,
- provides operating point in term of minimum SNR and path separation,
- not a general solution (since a SNR or a path separation needs to be set).
- Through these two combined approaches, the Alternating Projection Estimator seems an excellent candidate as a multipath mitigation technique.

Et voilà

Thank you for your attention!

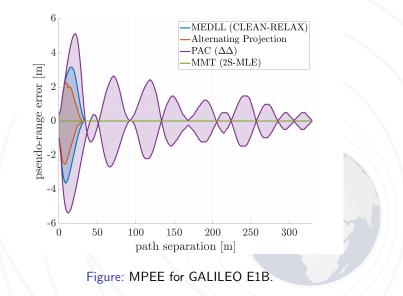
References I

- E. Kaplan and C. Hegarty, Understanding GPS/GNSS: Principle and Applications, 3rd ed. Artech House, 2017.
- [2] C. Lubeigt, L. Ortega, J. Vilà-Valls, L. Lestarquit, and
 E. Chaumette, "Joint Delay-Doppler Estimation Performance in a Dual Source Context," *Remote Sensing*, vol. 12, no. 23, 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/23/3894
- [3] R. D. Van Nee, "The Multipath Estimating Delay Lock Loop," in IEEE Second International Symposium on Spread Spectrum Techniques and Applications, 1992, pp. 39–42.

References II

- [4] B. R. Townsend, P. C. Fenton, K. J. Van Dierendonck, and R. D. J. Van Nee, "Performance Evaluation of the Multipath Estimating Delay Lock Loop," *Navigation*, vol. 42, no. 3, pp. 502–514, 1995. [Online]. Available: https://onlinelibrary.wiley. com/doi/abs/10.1002/j.2161-4296.1995.tb01903.x
- [5] L. R. Weill, "Multipath Mitigation using Modernized GPS Signals: How Good Can it Get?" Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), pp. 493–505, September 2002.
- [6] I. Ziskind and M. Wax, "Maximum Likelihood Localization of Multiple Sources by Alternating Projection," *IEEE Transactions* on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1553–1560, 1988.

References III


 J. Jones, P. Fenton, and B. Smith, "Theory and Performance of the Pulse Aperture Correlator," NovAtel Inc., Tech. Rep., 2004. [Online]. Available: https://hexagondownloads.blob.core.windows.net/public/ Novatel/assets/Documents/Papers/PAC/PAC.pdf

backup: Simulation set-up

- Signals: GPS L1 C/A and GALILEO E1B,
- ▶ pre-correlation bandwidth B = sampling frequency $F_s = 12 \times 1.023$ MHz,
- Multipath-to-direct amplitudes ratio MDR = 0.5,
- for RMSE w.r.t. SNR, relative phase $\Delta \phi = 0$,
- Monte Carlo runs: *nMC* = 1000
- Definition of SNR_{out}:

$$SNR_{out} \triangleq \frac{\rho_0^2}{\sigma_n^2} \int_0^{T_I} |s(t)|^2 dt = \left(\frac{C}{N_0}\right) T_I$$
(5)

backup: MPEE

Aerospace Conference 2022, Big Sky, MT, USA

March 5 - March 12, 2022

backup: RMSE w.r.t. the path separation

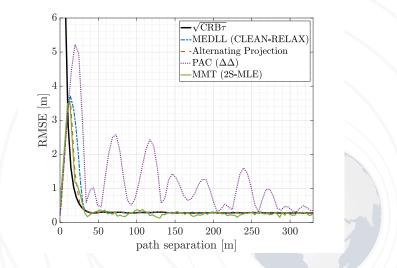


Figure: RMSE of $\hat{\tau}_0$ w.r.t. $c\Delta \tau$ for GALIELO E1B and SNR_{out} = 34dB.

backup: RMSE w.r.t. the SNR

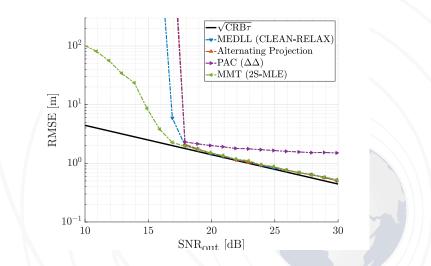


Figure: RMSE of $\hat{\tau}_0$ w.r.t. SNR_{out} for GALILEO E1B and $c\Delta \tau = 150$ m.